References

  1. X.D. He, P. Li, Surface water pollution in the Middle Chinese Loess Plateau with special focus on hexavalent chromium (Cr6+): occurrence, sources and health risks, Exposure Health, 12 (2020) 385–401.
  2. N.Y. Donkadokula, A.K. Kola, I. Naz, D. Saroj, A review on advanced physico-chemical and biological textile dye wastewater treatment techniques, Rev. Environ. Sci. Biotechnol., 19 (2020) 543–560.
  3. Y. Deng, R. Zhao, Advanced oxidation processes (AOPs) in wastewater treatment, Curr. Pollut. Rep., 1 (2015) 167–176.
  4. E. Neyens, J. Baeyens, A review of classic Fenton’s peroxidation as an advanced oxidation technique, J. Hazard. Mater., 98 (2003) 33–50.
  5. T.L.P. Dantas, V.P. Mendonça, H.J. José, A.E. Rodrigues, R.F.P.M. Moreira, Treatment of textile wastewater by heterogeneous Fenton process using a new composite Fe2O3/carbon, Chem. Eng. J., 118 (2006) 77–82.
  6. E. Casbeer, V.K. Sharma, X.-Z. Li, Synthesis and photocatalytic activity of ferrites under visible light: a review, Sep. Purif. Technol., 87 (2012) 1–14.
  7. G.H. Du, Z.L. Liu, X. Xia, Q. Chu, S.M. Zhang, Characterization and application of Fe3O4/SiO2 nanocomposites,
    J. Sol-Gel Sci. Technol., 39 (2006) 285–291.
  8. J. Wu, X. Wang, H. Kang, J. Zhang, C. Yang, CuFe2O4 as heterogeneous catalyst in degradation of p-nitrophenol with photoelectron-Fenton-like process, Int. J. Environ. Sci. Technol., 71 (2014) 534–545.
  9. C.K. Cheng, Z.Y. Kong, M.R. Khan, Photocatalytic-Fenton degradation of glycerol solution over visible
    light-responsive CuFe2O4, Water Air Soil Pollut., 226 (2015) 1–12, doi: 10.1007/s11270-015-2592-2.
  10. N. Hamdan, M. Abu Haija, F. Banat, A. Eskhan, Heterogeneous catalytic degradation of phenol
    by a Fenton-type reaction using copper ferrites (CuFe2O4), Desal. Water Treat., 69 (2017) 268–283.
  11. A. Khan, Z. Valicsek, O. Horváth, Synthesis, characterization and application of iron(II) doped copper ferrites (CuII(x)FeII(1–x)FeIII2O4) as novel heterogeneous photo-Fenton catalysts, Nanomaterials, 10 (2020) 1–17, doi:10.3390/nano10050921.
  12. G.-T. Pan, M.-H. Lai, R.-C. Juang, T.-W. Chung, T.C.-K. Yang, Preparation of visible-light-driven silver vanadates by a microwave-assisted hydrothermal method for the photodegradation of volatile organic vapors, Ind. Eng. Chem. Res., 50 (2011) 2807–2814.
  13. T.T. Alhmoud, S.S. Mahmoud, A.Y. Hammoudeh, Fenton-like degradation of phenol catalyzed by a series of fe-containing mixed oxides systems, IOP Conf. Ser.: Mater. Sci. Eng., 305 (2018) 012018.
  14. R. Ghanem, Preparation and Characterization of Supported Copper Ferrite Catalysts and their efficiency in the Fenton-Like Degradation of Phenol in Aqueous Solutions, Master Thesis, Yarmouk University, 2018.
  15. D.A.H. Hanaor, C.C. Sorrell, Review of the anatase to rutile phase transformation, J. Mater. Sci., 46 (2011) 855–874.
  16. R. Gonzalez, R. Zallen, Infrared reflectivity and lattice fundamentals in anatase TiO2, Phys. Rev. B: Condens. Matter, 55 (1997) 7014–7017.
  17. M. Ocatia, V. Fornfis, J. Garcia Ramos, C. Serna, Factors affecting the infrared and Raman spectra of rutile powders, J. Solid State Chem., 75 (1988) 364–372.
  18. V. Sivakumar, R. Suresh, K. Giribabu, R. Manigandan, S. Munusamy, S. Praveen Kumar, S. Muthamizh,
    V. Narayanan, Copper vanadate nanoparticles: synthesis, characterization and its electrochemical sensing property, J. Mater. Sci.: Mater. Electron., 25 (2014) 1485–1491.
  19. M. Pelaez, N. Nolan, S. Pillai, M. Seery, P. Falaras, A. Kontos, P. Dunlop, J. Hamilton, J. Byrne, K. Shea,
    M. Entezari, D. Dionysiou, A review on the visible light active titanium dioxide photocatalysts for environmental applications, Appl. Catal., B, 125 (2012) 331–349.
  20. J. Tauc, R. Grigorovic, A. Vancu, Optical properties and electronic structure of amorphous germanium, Phys. Stat. Sol., 15 (1966) 627–636.
  21. M.I. Litter, M.A. Blesa, Photodissolution of iron oxides. IV. A comparative study on the photodissolution of hematite, magnetite, and maghemite in EDTA media, Can. J. Chem., 70 (1992) 2502–2510.
  22. N.R. Dhineshbabu, N. Nithyavathy, R. Vetumperumal, Study of structural and optical properties of cupric oxide nanoparticles, Appl. Nanosci., 6 (2016) 933–939.
  23. X. Yang, W. Chen, J. Huang, Y. Zhou, Y. Zhu, C. Li, Rapid degradation of methylene blue in a novel heterogeneous Fe3O4@rGO@TiO2-catalyzed photo-Fenton system, Sci. Rep., 5 (2015) 1–10.
  24. P. Ajithkumar, S. Mohana, S. Sumathi, Synthesis, characterization, optical and photocatalytic activity of yttrium and copper co‑doped zinc ferrite under visible light, J. Mater. Sci.: Mater. Electron., 31 (2020) 1168–1182.
  25. L.A. Frolova, O.V. Khmelenko, The study of Co-Ni‑Mn ferrites for the catalytic decomposition of 4‑nitrophenol, Catal. Lett., 53 (2020) 1–12.
  26. G. Wei, Y. Yang, Y. Li, L. Zhang, Z. Xin, Z. Li, L. Huang, A new catalytic composite of bentonite-based bismuth ferrites with good response to visible light for photo-Fenton reaction: application performance and catalytic mechanism, Appl. Clay Sci., 184 (2020) 1–8.
  27. M.F. Hanafi, N. Sapawe, The potential of ZrO2 catalyst toward degradation of dyes and phenolic compound, Mater. Today, 19 (2019) 1524–1528.
  28. A.J.R. Luciano, L. de Sousa Soletti, M.E.C. Ferreira, L.F. Cusioli, M.B. de Andrade, R. Bergamasco,
    N.U. Yamaguchi, Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation, J. Environ. Chem. Eng., 8 (2020) 1–9.
  29. B. Alqassem, I. Othman, M. Abu Haija, F. Banat, Comparative catalytic activity of pure, mixed and P-modified CoFe2O4 nanoparticles for water treatment at neutral pH, Catal. Commun., 150 (2021) 1–19.
  30. B. Finlayson-Pitts, J. Pitts Jr., Chemistry of the Upper and Lower Atmosphere, California, 2000.