References

  1. M. Elimelech, W.A. Phillip, The future of seawater desalination: energy, technology, and the environment, Science, 333 (2011) 712–717.
  2. C. Fritzmann, J. Löwenberg, T. Wintgens, T. Melin, State-of-the-art of reverse osmosis desalination, Desalination, 216 (2007) 1–76.
  3. E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang, The state of desalination and brine production: a global outlook, Sci. Total Environ., 657 (2019) 1343–1356.
  4. I. Ullah, M.G. Rasul, Recent developments in solar thermal desalination technologies: a review, Energies, 12 (2018) 119, doi: 10.3390/en12010119.
  5. K. Elsaid, E.T. Sayed, M.A. Abdelkareem, A. Baroutaji, A.G. Olabi, Environmental impact of desalination processes: mitigation and control strategies, Sci. Total Environ., 740 (2020) 140125, doi: 10.1016/j.scitotenv.2020.140125.
  6. H. Miyakawa, M. Maghram Al Shaiae, T.N. Green, Y. Ito, Y. Sugawara, M. Onishi, Y. Fusaoka, M. Farooque Ayumantakath, A. Saleh Al Amoudi, Reliable seawater Ro operation with high water recovery and no-chlorine/No-Sbs dosing in Arabian Gulf, Saudi Arabia, Membranes, 11 (2021) 141,
    doi: 10.3390/ membranes11020141.
  7. K.E. Murray, S.M. Thomas, A.A. Bodour, Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment, Environ. Pollut., 158 (2010) 3462–3471.
  8. R.P. Schwarzenbach, B.I. Escher, K. Fenner, T.B. Hofstetter, C. Annette Johnson, U. von Gunten, B. Wehrli, The challenge of micropollutants in aquatic systems, Science, 313 (2006) 1072–1077.
  9. Y.J. Lim, K. Goh, M. Kurihara, R. Wang, Seawater desalination by reverse osmosis: current development and future challenges in membrane fabrication – a review, J. Membr. Sci., 629 (2021) 119292, doi:10.1016/j.memsci.2021.119292.
  10. J.G. Wijmans, R.W. Baker, The solution–diffusion model: a review, J. Membr. Sci., 107 (1995) 1–21.
  11. M. Mietton-Peuchot, V. Milisic, P. Noilet, Grape must concentration by using reverse osmosis. Comparison with chaptalization, Desalination, 148 (2002) 125–129.
  12. C. Sagne, C. Fargues, R. Lewandowski, M.-L. Lameloise, M. Gavach, M. Decloux, A pilot scale study of reverse osmosis for the purification of condensate arising from distillery stillage concentration plant, Chem. Eng. Process. Process Intensif., 49 (2010) 331–339.
  13. Q. Ramsey, Q. Yang, I. Fisk, C. Ayed, R. Ford, Assessing the sensory and physicochemical impact of reverse osmosis membrane technology to dealcoholize two different beer styles, Food Chem.: X, 10 (2021) 100121, doi:10.1016/j. fochx.2021.100121.
  14. C. Bellona, J.E. Drewes, P. Xu, G. Amy, Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review, Water Res., 38 (2004) 2795–2809.
  15. L.F. Greenlee, D.F. Lawler, B.D. Freeman, B. Marrot, P. Moulin, Reverse osmosis desalination: water sources, technology, and today’s challenges, Water Res., 43 (2009) 2317–2348.
  16. H. Bouzid, M. Rabiller-Baudry, Z. Derriche, N. Bettahar, Fluxes in reverse osmosis of model acidic and alkaline transient effluents issued from skim milk filtration, Desal. Water Treat., 43 (2012) 52–62.
  17. J. Jaime Sadhwani Alonso, N. El Kori, N. Melián-Martel, B. Del Río-Gamero, Removal of ciprofloxacin from seawater by reverse osmosis, J. Environ. Manage., 217 (2018) 337–345.
  18. N. Al-Bastaki, Removal of methyl orange dye and Na2SO4 salt from synthetic waste water using reverse osmosis, Chem. Eng. Process. Process Intensif., 43 (2004) 1561–1567.
  19. L. Wang, C. Albasi, V. Faucet-Marquis, A. Pfohl-Leszkowicz, C. Dorandeu, B. Marion, C. Causserand, Cyclophosphamide removal from water by nanofiltration and reverse osmosis membrane, Water Res., 43 (2009) 4115–4122.
  20. M. Xie, L.D. Nghiem, W.E. Price, M. Elimelech, Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis, Water Res., 46 (2012) 2683–2692.
  21. J. Heo, L.K. Boateng, J.R.V. Flora, H. Lee, N. Her, Y.-G. Park, Y. Yoon, Comparison of flux behavior and synthetic organic compound removal by forward osmosis and reverse osmosis membranes, J. Membr. Sci., 443 (2013) 69–82.
  22. E. Dražević, K. Košutić, M. Svalina, J. Catalano, Permeability of uncharged organic molecules in reverse osmosis desalination membranes, Water Res., 116 (2017) 13–22.
  23. M. Ding, A. Szymczyk, F. Goujon, A. Soldera, A. Ghoufi, Structure and dynamics of water confined in a polyamide reverse-osmosis membrane: a molecular-simulation study, J. Membr. Sci., 458 (2014) 236–244.
  24. H. Yan, X. Miao, J. Xu, G. Pan, Y. Zhang, Y. Shi, M. Guo, Y. Liu, The porous structure of the fully-aromatic polyamide film in reverse osmosis membranes, J. Membr. Sci., 475 (2015) 504–510.
  25. F. Pacheco, R. Sougrat, M. Reinhard, J.O. Leckie, I. Pinnau, 3D visualization of the internal nanostructure of polyamide thin films in RO membranes, J. Membr. Sci., 501 (2016) 33–44.
  26. L. Lin, R. Lopez, G.Z. Ramon, O. Coronell, Investigating the void structure of the polyamide active layers of thin-film composite membranes, J. Membr. Sci., 497 (2016) 365–376.
  27. M.M. Kłosowski, C.M. McGilvery, Y. Li, P. Abellan, Q. Ramasse, J.T. Cabral, A.G. Livingston, A.E. Porter, Micro-to nano-scale characterisation of polyamide structures of the SW30HR RO membrane using advanced electron microscopy and stain tracers, J. Membr. Sci., 520 (2016) 465–476.
  28. https://www.aquaportail.com/definition-7158-eau-de-mernaturelle. html
  29. M.J. Atkinson, C Bingman, Elemental composition of commercial seasalts, J. Aquariculture Aquat. Sci., 8 (1997) 39–43.
  30. V.O. Doroschuk, S.A. Kulichenko, S.O. Lelyushok, The influence of substrate charge and molecular structure on interphase transfer in cloud point extraction systems, J. Colloid Interface Sci., 291 (2005) 251–255.
  31. https://www.chemsrc.com/en/cas/70-16-6_585810.html
  32. T.V.N. Nguyen, L. Paugam, P. Rabiller, M. Rabiller-Baudry, Study of transfer of alcohol (methanol, ethanol, isopropanol) during nanofiltration in water/alcohol mixtures, J. Membr. Sci., 601 (2020) 117907, doi:10.1016/j.memsci.2020.117907.
  33. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts, John Wiley & Sons, Hoboken, New Jersey, USA 2004.]
  34. https://www.lenntech.com/Data-sheets/Koch-Fluid-Systems-TFC-4820-HR-L.pdf
  35. L. Le Petit, M. Rabiller-Baudry, R. Touin, R. Chataignier, P. Thomas, O. Connan, R. Périon, Efficient and rapid multiscale approach of polymer membrane degradation and stability: application to formulation of harmless non-oxidative biocide for polyamide and PES/PVP membranes, Sep. Purif. Technol., 259 (2021) 118054, doi:10.1016/j.seppur.2020.118054.
  36. https://www.lenntech.com/feedback/feedback_uk.htm?ref_ title=Filmtec/Dow-Filmtec-SW30-4040.pdf
  37. I. Sutzkover, D. Hasson, R. Semiat, Simple technique for measuring the concentration polarization level in a reverse osmosis system, Desalination, 131 (2000) 117–127.
  38. E.M. Van Wagner, A.C. Sagle, M.M. Sharma, B.D. Freeman, Effect of crossflow testing conditions, including feed pH and continuous feed filtration, on commercial reverse osmosis membrane performance, J. Membr. Sci., 345 (2009) 97–109.
  39. Y. Hanafi, P. Loulergue, S. Ababou-Girard, C. Meriadec, M. Rabiller-Baudry, K. Baddari, A. Szymczyk, Electrokinetic analysis of PES/PVP membranes aged by sodium hypochlorite solutions at different pH, J. Membr. Sci., 501 (2016) 24–32.
  40. R.F. Fedors, A method for estimating both the solubility parameters and molar volumes of liquids, Polym. Eng. Sci., 14 (1974) 147–154.
  41. M. Rabiller-Baudry, A. Bouzin, C. Hallery, J. Girard, C. Leperoux, Evidencing the chemical degradation of a hydrophilised PES ultrafiltration membrane despite protein fouling, Sep. Purif. Technol., 147 (2015) 62–81.
  42. Q. Li, J. Song, H. Yu, Z. Li, X. Pan, B. Yang, Investigating the microstructures and surface features of seawater RO membranes and the dependencies of fouling resistance performances, Desalination, 352 (2014) 109–117.
  43. B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, Influence of molecular size, polarity and charge on the retention of organic molecules by nanofiltration, J. Membr. Sci., 156 (1999) 29–41.
  44. B. González, N. Calvar, E. Gómez, Á. Domínguez, Density, dynamic viscosity, and derived properties of binary mixtures of methanol or ethanol with water, ethyl acetate, and methyl acetate at T = (293.15, 298.15, and 303.15) K, J. Chem. Thermodyn., 39 (2007) 1578–1588.
  45. F.-M. Pang, C.-E. Seng, T.-T. Teng, M.H. Ibrahim, Densities and viscosities of aqueous solutions of 1-propanol and 2-propanol at temperatures from 293.15 K to 333.15 K, J. Mol. Liq., 136 (2007) 71–78.
  46. I.S. Khattab, F. Bandarkar, M.A.A. Fakhree, A. Jouyban, Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323 K, Korean J. Chem. Eng., 29 (2012) 812–817.
  47. https://wissen.science-and-fun.de/chemistry/chemistry/ density-tables/ethanol-water-mixtures/
  48. T.V.N. Nguyen, Etudes des mécanismes de transfert des solutés neutres et chargés en nanofiltration dans des milieux hydroalcooliques (Studies of transfer mechanisms of neutral and charged solutes in nanofiltration in hydroalcoholic media), Ph.D. Dissertation, Université de Rennes 1, France, 2018.