References

  1. A. Leidreiter, F. Boselli, 100% énergies renouvelables: renforcer le développement au Maroc, World Future Council, 2015.
  2. C.E. Rodrigues Reis, A.K. Furtado Carvalho, H.B.S. Bento, H.F.de Castro, Integration of microbial biodiesel and bioethanol industries through utilization of vinasse as substrate for oleaginous fungi, Bioresour. Technol. Rep., 6 (2019) 46–53.
  3. H. Arslanoğlu, S. Kaya, F. Tümen, Cr(VI) adsorption on low-cost activated carbon developed from grape
    marc-vinasse mixture, Part. Sci. Technol. An Int. J., 38 (2020) 768–781.
  4. M. Elazhar, A. Bouchabchoub, F. Elazhar, A. Elmidaoui, M. Taky, Industrial-scale anaerobic digestion of vinasse in morocco: performances and statistical models, Desal. Water Treat., 240 (2021) 97–105.
  5. M. Asadi, H. Guo, K. McPhedran, Biogas production estimation using data-driven approaches for cold region municipal wastewater anaerobic digestion, J. Environ. Manage., 253 (2020) 109708, doi:10.1016/j.jenvman.2019.109708.
  6. D. Barik, S. Murugan, An artificial neural network and genetic algorithm optimized model for biogas production from co-digestion of seed cake of Karanja and cattle dung, Waste Biomass Valorization, 6 (2015) 1015–1027.
  7. B. Najafi, S. Faizollahzadeh Ardabili, Application of ANFIS, ANN, and logistic methods in estimating biogas production from spent mushroom compost (SMC), Resour. Conserv. Recycl., 133 (2018) 169–178.
  8. Ö. Selçuk Kuşçu, D. Teresa Sponza, Performance of anaerobic baffled reactor (ABR) treating synthetic wastewater containing p-nitrophenol, Enzyme Microb. Technol., 36 (2005) 888–895.
  9. A.A.M. Langenhoff, N. Intrachandra, D.C. Stuckey, Treatment of dilute soluble and colloidal wastewater using an anaerobic baffled reactor: influence of hydraulic retention time, Water Res., 34 (2000) 1307–1317.
  10. S. Nachaiyasit, D.C. Stuckey, The effect of shock loads on the performance of an anaerobic baffled reactor (ABR). 1. Step changes in feed concentration at constant retention time, Water Res., 31 (1997) 2737–2746.
  11. F. Xu, Z.-W. Wang, Y. Li, Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters, Bioresour. Technol., 173 (2014) 168–176.
  12. C. Mao, J. Xi, Y. Feng, X. Wang, G. Ren, Biogas production and synergistic correlations of systematic parameters during batch anaerobic digestion of corn straw, Renewable Energy, 132 (2019) 1271–1279.
  13. A.M. Enitan, S. Kumari, J.O. Odiyo, F. Bux, F.M. Swalaha, Principal component analysis and characterization of methane community in a full-scale bioenergy producing UASB reactor treating brewery wastewater, Phys. Chem. Earth Part A/B/C, 108 (2018) 1–8.
  14. S. Lemaigre, G. Adam, X. Goux, A. Noo, B. De Vos, P.A. Gerin, P. Delfosse, Transfer of a static PCA-MSPC model from a steady-state anaerobic reactor to an independent anaerobic reactor exposed to organic overload, Chemom. Intell. Lab. Syst., 159 (2016) 20–30.
  15. APHA, Standard Methods for the Examination of Water and Wastewater: Distillation Method, 5-65, American Public Health Association (APHA), Washington, DC, USA, 2002.
  16. B. Drosg, R. Braun, G. Bochmann, T. Al Saedi, Chapter 3 – Analysis and Characterisation of Biogas Feedstocks, A. Wellinger, J. Murphy, B. David, The Biogas Handbook: Science, Production and Applications, Woodhead Publishing Series in Energy, Philadelphia, USA, 2013, pp. 52–84.
  17. I. Syaichurrozi, S. Sarto, W.B. Sediawan, M. Hidayat, Mechanistic model of electrocoagulation process for treating vinasse waste: effect of initial pH, J. Environ. Chem. Eng., 8 (2020) 103756, doi:10.1016/j.jece.2020.103756.
  18. H.F. Kaiser, The application of electronic computers to factor analysis, Educ. Psychol. Meas., XX (1960) 141–154, doi: 10.1177/001316446002000116.
  19. V.V. Nair, H. Dhar, S. Kumar, A.K. Thalla, S. Mukherjee, J.W.C. Wong, Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor, Bioresour. Technol., 217 (2016) 90–99.
  20. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, 3rd ed., Wiley, New Jersey, 2003.
  21. K. Paritosh, V. Vivekanand, Biochar enabled syntrophic action: solid state anaerobic digestion of agricultural stubble for enhanced methane production, Bioresour. Technol., 289 (2019) 121712, doi:10.1016/j.biortech.2019.121712.
  22. F. Xu, Z.-W. Wang, Y. Li, Predicting the methane yield of lignocellulosic biomass in mesophilic solid-state anaerobic digestion based on feedstock characteristics and process parameters, Bioresour. Technol., 173 (2014) 168–176.