References

  1. L. Zanetti, N. Frison, E. Nota, M. Tomizioli, D. Bolzonella, F. Fatone, Progress in real-time control applied to biological nitrogen removal from wastewater. A short-review, Desalination, 286 (2012) 1–7.
  2. R. Abdallah, Development of an Integrated Process for the Degradation of Nitrates Coupling of an Electrochemical Process and a Biological Process, Thesis/University of Rennes 1 Under the Seal of the European University of Brittany In International Joint Supervision with Lebanese University, 2014, p. 174. Available at: www.Theses.fr
  3. A. Viard, C. Henault, Ph. Rochette, P. Kuikman, F. Flenet, P. Cellier, Nitrous oxide (N2O), a powerful greenhouse gas emitted by agricultural soils: inventory methods and reduction levers OCL, Agron. – Environ., 20 (2013).
  4. L. Guozhi, X. Guimei, G. Jinfang, T. Hongxin, Effect of dissolved oxygen on nitrate removal using polycaprolactone as an organic carbon source and biofilm carrier in fixed-film denitrifying reactors,
    J. Environ. Sci., 43 (2016) 147–152.
  5. M.A. Gómez, E. Hontoria, J. González-López, Effect of dissolved oxygen concentration on nitrate removal from groundwater using a denitrifying submerged filter, J. Hazard. Mater., 90 (2002) 267–278.
  6. A. Filali, Y. Fayolle, P. Peu, L. Philippe, F. Nauleau, S. Gillot, Aeration Control in a Full-Scale Activated Sludge Wastewater Treatment Plant: Impact on Performances, Energy Consumption and N2O Emission, 11th IWA Conference on Instrumentation, Control and Automation, Process Engineering Sciences for a Sustainable Industry, Narbonne, France, 2013, 4 p.
  7. L. Baikun, L.B. Paul, Oxidation–reduction potential changes in aeration tanks and microprofiles of activated sludge floc in medium- and low-strength wastewaters, Water Environ. Res., 76 (2004) 394–403.
  8. K. Moriyama, M. Takahashi, Y. Haraha, Retrofitting and operation of small extended aeration plants for advanced treatment - some experiences in Japan, Water Sci. Technol., 28 (1993) 377–385.
  9. M.P.E. Prien, ORP Improves Operational Efficiency, What is ORP, The Michigan Water Environment Association (MWEA), MWEA Annual Conference, June 26, 2012. Available at: www.mi-wea.org
  10. J. Charpentier, M. Florentz, G. David, Oxidation–reduction potential (ORP) regulation: a way to optimize pollution removal and energy savings in the low load activated sludge process, Water Sci. Technol., 19 (1987) 654–655.
  11. Q. Su, C. Ma, C. Domingo-Félez, A. Sofie Kiil, B. Thamdrup, M. Mark Jensen, B.F. Smets, Low nitrous oxide production through nitrifier–denitrification in intermittent-feed high-rate nitritation reactors, Water Res., 123 (2017) 429–438.
  12. R. Vitanza, I. Colussi, A. Cortesi, V. Gallo, Implementing a respirometry-based model into BioWin software to simulate wastewater treatment plant operations, J. Water Process Eng., 9 (2016) 267–275.
  13. B. Weiss, N. Roche, O. Potier, MN. Pons, J.-L. Cecile, C. Prost, New Use of Online Respirometry for the Management of an Activated Sludge Treatment Plant, Research Gate, TSM Number 4, 1999. Available at: www.researchgate.net/ publication/249646049
  14. P. Chatellier, J.M. Audic, Mass balance for an in-situ estimation of the activated sludge specific oxygen uptake,
    J. Water Sci., 12 (1999) 509–514.
  15. H. Cherif, S. Ben-Alaya, Y. Touhami, H. Shayeb, Study of biodegradability for municipal and industrial Tunisian wastewater by respirometric technique and batch reactor test, Sustainable Environ. Res., 26 (2016) 55–62.
  16. P.T. Martín de la Vega, E. Martinez de Salazar, M.A. Jaramillo, J. Cros, New contributions to the ORP & DO time profile characterization to improve biological nutrient removal, Bioresour. Technol., 114 (2012) 160–170.
  17. E. Paul, S. Plisson-Saune, M. Mauret, J. Cantet, Process state evaluation of alternating oxic-anoxic activated sludge using ORP, pH and DO, Water Sci. Technol., 38 (1998) 299–306.
  18. H. Kim, O.J. Hao, pH and oxidation–reduction potential control strategy for optimization of nitrogen removal in an alternating aerobic-anoxic system, Water Environ. Res., 73 (2001) 95–102.
  19. P.T. Martín de la Vega, M.A. Jaramillo-Morán, Multilevel adaptive control of alternating aeration cycles in wastewater treatment to improve nitrogen and phosphorus removal and to obtain energy saving, Water, 11 (2019) 60, doi: 10.3390/w11010060.
  20. Moroccan Regulations According to Decree n ° 2942-13 of 1st hija1434, Sets the General Limit Values for Discharge into Surface or Ground (BO n ° 6202 of November 7, 2013).
  21. Order No. 2943-13 of 1st hija1434 Sets the Yields of Wastewater Purification Devices, For Domestic Wastewater, the Yields to Take into Account the Rate of Elimination of Oxidizable Materials (OM) (October 7, 2013).
  22. The regulations of the European Union and According to the Directive of the Council of the European Communities (91/271/ EEC) of May 21, 1991.
  23. C. Boutin, O. Caquel, N. Dimastromatteo, J. Dumaine, G. Fernandes, C. Gervasi, S. Parotin, S. Prost-Boucle,
    C. Tscherter, Operating Guide, Activated Sludge Treatment Works; (ONEMA), Design and Operation of Wastewater Treatment Plants for Small and Medium-Sized Communities (EPNAC) Partnership 2013–2015 Water and Urban Development Action 40-2, 2015.
  24. C. Lousteau, Conversion of Ammoniacal Pollution into Nitrogen Molecular by Catalytic Wet Oxidation (OVHC). Catalysis. Claude Bernard University – Lyon I, France, 2013, pp. 229.
  25. M.K. Stenstrom, R.A. Poduska, The Effect of Dissolved Oxygen Concentration on Nitrification. Water Research, Water Resources Program, School of Engineering and Applied Science, University of California, Los Angeles, CA, 1980, pp. 643–649.
  26. S. Plisson, J. Cantet, Denitrification by Bacterial Bed on Cloisonyl Packing, Water, Industry Nuisances, n°227 1999, p. 58.
  27. G. Deronzier, S. Schétrite, Y. Racault, J.-P. Canler, A. Liénard, A. Héduit, P. Duchène, Nitrogen Treatment in Biological Wastewater Treatment Plants in Small Communities, FNDAE N°: 25, French Ministry of Agriculture and Fisheries © Cemagref, 2001, pp. 79.
  28. P.T. Martin de la Vega, M.A. Jaramillo-Morán, Obtaining key parameters and working conditions of wastewater biological nutrient removal by means of artificial intelligence tools, Water, 10 (2018) 685, doi:10.3390/w10060685.
  29. M. Myers, L. Myers, R. Okey, The use of oxidation–reduction potential as a means of controlling effluent ammonia concentration in an extended aeration activated sludge system, Proc. Water Environ. Fed., 6 (2006) 5901–5926, doi: 10.2175/193864706783775603.
  30. B. Rabinowitz, The Role of Specific Substrates in Excess Biological Phosphorus Removal, Ph.D. Thesis, Department of Civil Engineering, University of British Columbia, 1985.
  31. K. Curtin, S. Duerre, B. Fitzpatrick, P. Meyer, Biological Nutrient Removal, The Minnesota Pollution Control, 2011, pp. 69.