References

  1. UNESCO WWAP, The United Nations World Water Development Report 2018: Nature-Based Solutions for Water – UNESCO Digital Library, Accessed: Dec. 28, 2021. Available at: https://unesdoc.unesco.org/ark:/48223/pf0000261424
  2. A. Boretti, L. Rosa, Reassessing the projections of the world water development report, npj Clean Water, 2 (2019) 1–6, doi: 10.1038/s41545-019-0039-9.
  3. D. Jaspal, A. Malviya, Composites for wastewater purification: a review, Chemosphere, 246 (2020) 125788, doi: 10.1016/j. chemosphere.2019.125788.
  4. L. Liang, F. Xi, W. Tan, X. Meng, B. Hu, X. Wang, Review of organic and inorganic pollutants removal by biochar and biochar-based composites, Biochar, 3 (2021) 255–281.
  5. C.F. Carolin, P.S. Kumar, A. Saravanan, G.J. Joshiba, M. Naushad, Efficient techniques for the removal of toxic heavy metals from aquatic environment: a review, J. Environ. Chem. Eng., 5 (2017) 2782–2799.
  6. S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, X. Wang, Applications of water-stable metalorganic frameworks in the removal of water pollutants: a review, Environ. Pollut., 291 (2021) 118076, doi: 10.1016/j. envpol.2021.118076.
  7. V.V. Dev, G. Baburaj, S. Antony, V. Arun, K.A. Krishnan, Zwitterion-chitosan bed for the simultaneous immobilisation of Zn(II), Cd(II), Pb(II) and Cu(II) from multi-metal aqueous systems, J. Cleaner Prod., 255 (2020) 120309, doi: 10.1016/j. jclepro.2020.120309.
  8. I. Osasona, K. Aiyedatiwa, J.A. Johnson, O.L. Faboya, Activated carbon from spent brewery barley husks for cadmium ion adsorption from aqueous solution, Indones. J. Chem., 18 (2018) 145–152.
  9. A. Andelescu, M.A. Nistor, S.G. Muntean, M.E. Rădulescu-Grad, Adsorption studies on copper, cadmium, and zinc ion removal from aqueous solution using magnetite/carbon nanocomposites, Sep. Sci. Technol., 53 (2018) 2352–2364.
  10. H.K. Alluri, S.R. Ronda, V.S. Settalluri, B. Jayakumar Singh, V. Suryanarayana, P. Venkateshwar, Biosorption:
    an eco-friendly alternative for heavy metal removal, Afr. J. Biotechnol., 6 (2007) 2924–2931.
  11. Y. Fang, K. Yang, Y. Zhang, C. Peng, A. Robledo-Cabrera, A. López-Valdivieso, Highly surface activated carbon to remove Cr(VI) from aqueous solution with adsorbent recycling, Environ. Res., 197 (2021) 111151, doi:10.1016/j.envres.2021.111151.
  12. A.V. Borhade, B.K. Uphade, Removal of chromium(VI) from aqueous solution using modified CdO nanoparticles, Desal. Water Treat., 57 (2016) 9776–9788.
  13. Y. Zhu, X. He, J. Xu, Z. Fu, S. Wu, J. Ni, B. Hu, Insight into efficient removal of Cr(VI) by magnetite immobilised with Lysinibacillus sp. JLT12: mechanism and performance, Chemosphere, 262 (2021) 127901, doi:10.1016/j.chemosphere.2020.127901.
  14. H.M. Zwain, M. Vakili, I. Dahlan, Waste material adsorbents for zinc removal from wastewater:
    a comprehensive review, Int. J. Chem. Eng., 2014 (2014) 1–13.
  15. L. Monser, N. Adhoum, Modified activated carbon for the removal of copper, zinc, chromium and cyanide from wastewater, Sep. Purif. Technol., 26 (2002) 137–146.
  16. F. Liu, S. Hua, C. Wang, B. Hu, Insight into the performance and mechanism of persimmon tannin functionalised waste paper for U(VI) and Cr(VI) removal, Chemosphere, 287 (2022) 132199, doi:10.1016/j.chemosphere.2021.132199.
  17. D. Lakherwal, Adsorption of heavy metals – a review, Mater. Today:. Proc., 18 (2019) 4745–4750.
  18. E. Nassef, Y. Eltaweel, Removal of zinc from aqueous solution using activated oil shale, J. Chem., 2019 (2019) 1–10.
  19. C.K. Ahn, D. Park, S.H. Woo, J.M. Park, Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants, J. Hazard. Mater., 164 (2009) 1130–1136.
  20. M.R. Mahmoud, G.E. Sharaf El-Deen, M.A. Soliman, Surfactantimpregnated activated carbon for enhanced adsorptive removal of Ce(IV) radionuclides from aqueous solutions, Ann. Nucl. Energy, 72 (2014) 134–144.
  21. S.W. Puasa, K.N. Ismail, N.A.I.A. Khairi, Direct surfactantctimpregnated activated carbon for adsorption of reactive blue 4, Int. J. Eng. Technol., 7 (2018) 5–8.
  22. C.Y. Yin, M.K. Aroua, W.M.A.W. Daud, Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions, Sep. Purif. Technol., 52 (2007) 403–415.
  23. G.M. Rashad, M.R. Mahmoud, R.R. Sheha, Impregnated activated carbon for adsorption of Gd (III) radionuclides from aqueous solutions, Part. Sci. Technol. An Int. J., 36 (2017) 609–617.
  24. S. Muntaha, M.N. Khan, Natural surfactant extracted from sapindus mukurossi as an eco-friendly alternate to synthetic surfactant – a dye surfactant interaction study, J. Cleaner Prod., 93 (2015) 145–150.
  25. S.W. Puasa, K.N. Ismail, N.A.I.A. Khairi, Cleavable surfactantimpregnated activated carbon for enhanced adsorptive removal of reactive dye from an aqueous solution, Mater. Today:. Proc., 5 (2018) 22020–22028.
  26. M.E. Ossman, M. Abdel Fatah, N.A. Taha, Fe(III) removal by activated carbon produced from Egyptian rice straw by chemical activation, Desal. Water Treat., 52 (2014) 3159–3168.
  27. J. Chung, H. Kang, J.O. Kim, Changes in the properties of a solution using pulsed electric field treatment as pretreatment of membrane filtration, Desal. Water Treat., 57 (2016) 26758–26764.
  28. L. Ao, F. Xia, Y. Ren, J. Xu, D. Shi, S. Zhang, L. Gu, Q. He, Enhanced nitrate removal by micro-electrolysis using Fe0 and surfactant modified activated carbon, Chem. Eng. J., 357 (2019) 180–187.
  29. H.D. Choi, J.M. Cho, K. Baek, J.S. Yang, J.Y. Lee, Influence of cationic surfactant on adsorption of Cr(VI) onto activated carbon, J. Hazard. Mater., 161 (2009) 1565–1568.
  30. Y. Zhou, Z. Wang, A. Hursthouse, B. Ren, Gemini surfactantmodified activated carbon for remediation of hexavalent chromium from water, Water, 10 (2018) 1–13, doi: 10.3390/w10010091.
  31. K.S.W. Sing, Reporting physisoprtion data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 57 (1985) 603–619.
  32. R. Bardestani, G.S. Patience, S. Kaliaguine, Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT, Can. J. Chem. Eng., 97 (2019) 2781–2791.
  33. R.C. Bansal, M. Goyal, Activated Carbon Adsorption, Taylor and Francis Group, USA, 2005.
  34. A. Behnamfard, M.M. Salarirad, F. Vegliò, Removal of Zn(II) ions from aqueous solutions by ethyl xanthate impregnated activated carbons, Hydrometallurgy, 144–145 (2014) 39–53.
  35. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem., 87 (2015) 1051–1069.
  36. M. Nadeem, M. Shabbir, M.A. Abdullah, S.S. Shah, G. McKay, Sorption of cadmium from aqueous solution by surfactantmodified carbon adsorbents, Chem. Eng. J., 148 (2009) 365–370.
  37. S.Y. Lin, W.F. Chen, M.T. Cheng, Q. Li, Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption, Colloids Surf., A, 434 (2013) 236–242.
  38. L. Khezami, R. Capart, Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies, J. Hazard. Mater., 123 (2005) 223–231.
  39. W. Wang, Y. Liu, X. Liu, B. Deng, S. Lu, Y. Zhang, B. Bi, Z. Ren, Equilibrium adsorption study of the adsorptive removal of Cd2+ and Cr6+ using activated carbon, Environ. Sci. Pollut. Res., 25 (2018) 25538–25550.
  40. P. Malaviya, A. Singh, Physicochemical technologies for remediation of chromium-containing waters and wastewaters, Crit. Rev. Env. Sci. Technol., 41 (2011) 1111–1172.