References

  1. I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of soil and water contaminated with petroleum hydrocarbon: a review, Environ. Technol. Innov., 17 (2020) 100526, doi: 10.1016/j.eti.2019.100526.
  2. M. Tyagi, M.M.R. da Fonseca, C.C.C.R. de Carvalho, Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes, Biodegradation, 22 (2011) 231–241.
  3. S.J. Varjani, Microbial degradation of petroleum hydrocarbons, Bioresour. Technol., 223 (2017) 277–286.
  4. A.S. Nwankwegu, L. Zhang, D. Xie, C.O. Onwosi, W.I. Muhammad, C.K. Odoh, K. Sam, J.N. Idenyi, Bioaugmentation as a green technology for hydrocarbon pollution remediation. problems and prospects, J. Environ. Manage., 304 (2021) 114313, doi: 10.1016/j.jenvman.2021.114313.
  5. M.T. Bidja Abena, T. Li, M.N. Shah, W. Zhong, Biodegradation of total petroleum hydrocarbons (TPH) in highly contaminated soils by natural attenuation and bioaugmentation, Chemosphere, 234 (2019) 864–874.
  6. N.H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino, M. Nishimura, K. Kogure, Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and animal isolates, Microb. Ecol., 53 (2007) 173–186.
  7. T. Ra, Y. Zhao, M. Zheng, Comparative study on the petroleum crude oil degradation potential of microbes from petroleumcontaminated soil and non-contaminated soil, Int. J. Environ. Sci. Technol., 16 (2019) 7127–7136.
  8. S. Varjani, V.N. Upasani, Bioaugmentation of Pseudomonas aeruginosa NCIM 5514 – a novel oily waste degrader for treatment of petroleum hydrocarbons, Bioresour. Technol., 319 (2020) 124240, doi:10.1016/j.biortech.2020.124240.
  9. S.J. Varjani, V.N. Upasani, A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants, Int. Biodeterior. Biodegrad., 120 (2017) 71–83.
  10. N.H. Nik Raikhan, O. Nur Hidayati, Z. Mohd Fiqri, Nonmediator supported novel natural oxidative biodegradation of bisphenol a (BPA) in contaminated industrial wastewater by Pseudomonas aeruginosa NR.22, Int. J. Conserv. Sci., 8 (2017) 685–694.
  11. H. Gao, J. Zhang, H. Lai, Q.-H. Xue, Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil, Int. Biodeterior. Biodegrad., 122 (2017) 12–22.
  12. N.H. Nik Raikhan, B.H. Syuhadah, E.F. Nasyitah, M. Fauziah, O. Nurhidayati, Crude oil degradation by laccase Pseudomonas aeruginosa NR. 22. A driving force of bioremediation, 11 (2020) 757–764.
  13. S. Bera, A.S. Roy, K. Mohanty, Biodegradation of phenol by a native mixed bacterial culture isolated from crude oil contaminated site, Int. Biodeterior. Biodegrad., 121 (2017) 107–113.
  14. S.J. Varjani, V.N. Upasani, Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514, Bioresour. Technol., 222 (2016) 195–201.
  15. S. Ciston, R.M. Lueptow, K.A. Gray, Controlling biofilm growth using reactive ceramic ultrafiltration membranes, J. Membr. Sci., 342 (2009) 263–268.
  16. M. Pasmore, P. Todd, S. Smith, D. Baker, J.A. Silverstein, D. Coons, C.N. Bowman, Effects of ultrafiltration membrane surface properties on Pseudomonas aeruginosa biofilm initiation for the purpose of reducing biofouling, J. Membr. Sci., 194 (2001) 15–32.
  17. M. Nie, H. Nie, M. He, Y. Lin, L. Wang, P. Jin, S.Y. Zhang, Immobilization of biofilms of Pseudomonas aeruginosa NY3 and their application in the removal of hydrocarbons from highly concentrated oil-containing wastewater on the laboratory scale, J. Environ. Manage., 173 (2016) 34–40.
  18. H.-J. Yeom, S.C. Kim, Y.-W. Kim, I.-H. Song, Processing of alumina-coated clay–diatomite composite membranes for oily wastewater treatment, Ceram. Int., 42 (2016) 5024–5035.
  19. D. Lu, W. Cheng, T. Zhang, X. Lu, Q. Liu, J. Jiang, J. Ma, Hydrophilic Fe2O3 dynamic membrane mitigating fouling of support ceramic membrane in ultrafiltration of oil/water emulsion, Sep. Purif. Technol., 165 (2016) 1–9.
  20. N.G. Cogan, J. Li, A. Raju, S. Chellam, Optimal backwashing in dead-end bacterial micro filtration with irreversible attachment mediated by extracellular polymeric substances production, J. Membr. Sci., 520 (2016) 337–344.
  21. R. Pasumarthi, S. Chandrasekaran, S. Mutnuri, Biodegradation of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast, Mar. Pollut. Bull., 76 (2013) 276–282.
  22. M.Z. El-Fouly, A.M. Sharaf, A.A.M. Shahin, H.A. El-Bialy, A.M.A. Omara, Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa, J. Radiat. Res. Appl. Sci., 8 (2015) 36–48.
  23. N.R.N. Him, M.F. Zainuddin, A.Z.A. Basha, Fast biodegradation of toxic Bisphenol A by Pseudomonas aeruginosa NR.22 (Ps. NR.22) isolated from Malaysian Local Lake, AIP Conf. Proc., 1901 (2017) 100019, doi:10.1063/1.5010541.
  24. M.D. Rolfe, C.J. Rice, S. Lucchini, C. Pin, A. Thompson, A.D.S. Cameron, M. Alston, M.F. Stringer, R.P. Betts,
    J. Baranyi, M.W. Peck, J.C.D. Hinton, Lag phase is a distinct growth phase that prepares bacteria for exponential growth and involves transient metal accumulation, J. Bacteriol., 194 (2012) 686–701.
  25. K. Das, A.K. Mukherjee, Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India, Bioresour. Technol., 98 (2007) 1339–1345.
  26. Q. Chen, B. Bao, Y. Li, M. Liu, B. Zhu, J. Mu, Z. Chen, Effects of marine oil pollution on microbial diversity in coastal waters and stimulating indigenous microorganism bioremediation with nutrients, Reg. Stud. Mar. Sci., 39 (2020) 101395, doi: 10.1016/j.rsma.2020.101395.
  27. M. Deivakumari, M. Sanjivkumar, A.M. Suganya, J. Ruban Prabakaran, A. Palavesam, G. Immanuel, Studies on reclamation of crude oil polluted soil by biosurfactant producing Pseudomonas aeruginosa (DKB1), Biocatal. Agric. Biotechnol., 29 (2020) 101773, doi: 10.1016/j.bcab.2020.101773.
  28. R. Rehman, M.I. Ali, N. Ali, M. Badshah, M. Iqbal, A. Jamal, Z. Huang, Crude oil biodegradation potential of biosurfactantproducing Pseudomonas aeruginosa and Meyerozyma sp., J. Hazard. Mater., 418 (2021) 126276, doi: 10.1016/j.jhazmat.2021.126276.
  29. J. Mulinari, J.V. Oliveira, D. Hotza, Lipase immobilization on ceramic supports: an overview on techniques and materials, Biotechnol. Adv., 42 (2020) 107581.
  30. H. Nie, M. Nie, Z. Diwu, L. Wang, H. Yan, Y. Lin, B. Zhang, Y. Wang, Biological treatment of high salinity and low pH produced water in oilfield with immobilized cells of P. aeruginosa NY3 in a pilot-scale, J. Hazard. Mater., 381 (2020) 121232, doi: 10.1016/j.jhazmat.2019.121232.
  31. X. Dai, Z. Wang, M. Xu, Progress in treatment of oily wastewater by inorganic porous ceramic membrane, MATEC Web Conf., 114 (2017) 02016, doi: 10.1051/matecconf/201711402016.
  32. M.B. Asif, Z. Zhang, Ceramic membrane technology for water and wastewater treatment: a critical review of performance, full-scale applications, membrane fouling and prospects, Chem. Eng. J., 418 (2021) 129481, doi: 10.1016/j.cej.2021.129481.
  33. S.R.H. Abadi, M.R. Sebzari, M. Hemati, F. Rekabdar, T. Mohammadi, Ceramic membrane performance in microfiltration of oily wastewater, Desalination, 265 (2011) 222–228.
  34. B. Das, B. Chakrabarty, P. Barkakati, Preparation and characterization of novel ceramic membranes for microfiltration applications, Ceram. Int., 42 (2016) 14326–14333.