References
- I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of
soil and water contaminated with petroleum hydrocarbon: a
review, Environ. Technol. Innov., 17 (2020) 100526, doi: 10.1016/j.eti.2019.100526.
- M. Tyagi, M.M.R. da Fonseca, C.C.C.R. de Carvalho,
Bioaugmentation and biostimulation strategies to improve
the effectiveness of bioremediation processes, Biodegradation,
22 (2011) 231–241.
- S.J. Varjani, Microbial degradation of petroleum hydrocarbons,
Bioresour. Technol., 223 (2017) 277–286.
- A.S. Nwankwegu, L. Zhang, D. Xie, C.O. Onwosi,
W.I. Muhammad, C.K. Odoh, K. Sam, J.N. Idenyi, Bioaugmentation
as a green technology for hydrocarbon pollution
remediation. problems and prospects, J. Environ. Manage.,
304 (2021) 114313, doi: 10.1016/j.jenvman.2021.114313.
- M.T. Bidja Abena, T. Li, M.N. Shah, W. Zhong, Biodegradation
of total petroleum hydrocarbons (TPH) in highly contaminated
soils by natural attenuation and bioaugmentation,
Chemosphere, 234 (2019) 864–874.
- N.H. Khan, Y. Ishii, N. Kimata-Kino, H. Esaki, T. Nishino,
M. Nishimura, K. Kogure, Isolation of Pseudomonas aeruginosa from open ocean and comparison with freshwater, clinical, and
animal isolates, Microb. Ecol., 53 (2007) 173–186.
- T. Ra, Y. Zhao, M. Zheng, Comparative study on the petroleum
crude oil degradation potential of microbes from petroleumcontaminated
soil and non-contaminated soil, Int. J. Environ.
Sci. Technol., 16 (2019) 7127–7136.
- S. Varjani, V.N. Upasani, Bioaugmentation of Pseudomonas
aeruginosa NCIM 5514 – a novel oily waste degrader for
treatment of petroleum hydrocarbons, Bioresour. Technol.,
319 (2020) 124240, doi:10.1016/j.biortech.2020.124240.
- S.J. Varjani, V.N. Upasani, A new look on factors affecting
microbial degradation of petroleum hydrocarbon pollutants,
Int. Biodeterior. Biodegrad., 120 (2017) 71–83.
- N.H. Nik Raikhan, O. Nur Hidayati, Z. Mohd Fiqri, Nonmediator
supported novel natural oxidative biodegradation
of bisphenol a (BPA) in contaminated industrial wastewater
by Pseudomonas aeruginosa NR.22, Int. J. Conserv. Sci., 8 (2017)
685–694.
- H. Gao, J. Zhang, H. Lai, Q.-H. Xue, Degradation of asphaltenes
by two Pseudomonas aeruginosa strains and their effects on
physicochemical properties of crude oil, Int. Biodeterior.
Biodegrad., 122 (2017) 12–22.
- N.H. Nik Raikhan, B.H. Syuhadah, E.F. Nasyitah, M. Fauziah,
O. Nurhidayati, Crude oil degradation by laccase Pseudomonas
aeruginosa NR. 22. A driving force of bioremediation, 11 (2020)
757–764.
- S. Bera, A.S. Roy, K. Mohanty, Biodegradation of phenol
by a native mixed bacterial culture isolated from crude oil
contaminated site, Int. Biodeterior. Biodegrad., 121 (2017)
107–113.
- S.J. Varjani, V.N. Upasani, Biodegradation of petroleum
hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514, Bioresour. Technol., 222 (2016) 195–201.
- S. Ciston, R.M. Lueptow, K.A. Gray, Controlling biofilm growth
using reactive ceramic ultrafiltration membranes, J. Membr.
Sci., 342 (2009) 263–268.
- M. Pasmore, P. Todd, S. Smith, D. Baker, J.A. Silverstein,
D. Coons, C.N. Bowman, Effects of ultrafiltration membrane
surface properties on Pseudomonas aeruginosa biofilm initiation
for the purpose of reducing biofouling, J. Membr. Sci.,
194 (2001) 15–32.
- M. Nie, H. Nie, M. He, Y. Lin, L. Wang, P. Jin, S.Y. Zhang,
Immobilization of biofilms of Pseudomonas aeruginosa NY3 and
their application in the removal of hydrocarbons from highly
concentrated oil-containing wastewater on the laboratory scale,
J. Environ. Manage., 173 (2016) 34–40.
- H.-J. Yeom, S.C. Kim, Y.-W. Kim, I.-H. Song, Processing of
alumina-coated clay–diatomite composite membranes for oily
wastewater treatment, Ceram. Int., 42 (2016) 5024–5035.
- D. Lu, W. Cheng, T. Zhang, X. Lu, Q. Liu, J. Jiang, J. Ma,
Hydrophilic Fe2O3 dynamic membrane mitigating fouling
of support ceramic membrane in ultrafiltration of oil/water
emulsion, Sep. Purif. Technol., 165 (2016) 1–9.
- N.G. Cogan, J. Li, A. Raju, S. Chellam, Optimal backwashing in
dead-end bacterial micro filtration with irreversible attachment
mediated by extracellular polymeric substances production,
J. Membr. Sci., 520 (2016) 337–344.
- R. Pasumarthi, S. Chandrasekaran, S. Mutnuri, Biodegradation
of crude oil by Pseudomonas aeruginosa and Escherichia fergusonii isolated from the Goan coast, Mar. Pollut. Bull., 76 (2013)
276–282.
- M.Z. El-Fouly, A.M. Sharaf, A.A.M. Shahin, H.A. El-Bialy,
A.M.A. Omara, Biosynthesis of pyocyanin pigment by
Pseudomonas aeruginosa, J. Radiat. Res. Appl. Sci., 8 (2015) 36–48.
- N.R.N. Him, M.F. Zainuddin, A.Z.A. Basha, Fast biodegradation
of toxic Bisphenol A by Pseudomonas aeruginosa NR.22 (Ps.
NR.22) isolated from Malaysian Local Lake, AIP Conf. Proc.,
1901 (2017) 100019, doi:10.1063/1.5010541.
- M.D. Rolfe, C.J. Rice, S. Lucchini, C. Pin, A. Thompson,
A.D.S. Cameron, M. Alston, M.F. Stringer, R.P. Betts,
J. Baranyi,
M.W. Peck, J.C.D. Hinton, Lag phase is a distinct growth phase
that prepares bacteria for exponential growth and involves
transient metal accumulation, J. Bacteriol., 194 (2012) 686–701.
- K. Das, A.K. Mukherjee, Crude petroleum-oil biodegradation
efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains
isolated from a petroleum-oil contaminated soil from North-East India, Bioresour. Technol., 98 (2007) 1339–1345.
- Q. Chen, B. Bao, Y. Li, M. Liu, B. Zhu, J. Mu, Z. Chen, Effects of
marine oil pollution on microbial diversity in coastal waters and
stimulating indigenous microorganism bioremediation with
nutrients, Reg. Stud. Mar. Sci., 39 (2020) 101395, doi: 10.1016/j.rsma.2020.101395.
- M. Deivakumari, M. Sanjivkumar, A.M. Suganya, J. Ruban
Prabakaran, A. Palavesam, G. Immanuel, Studies on reclamation
of crude oil polluted soil by biosurfactant producing
Pseudomonas aeruginosa (DKB1), Biocatal. Agric. Biotechnol.,
29 (2020) 101773, doi: 10.1016/j.bcab.2020.101773.
- R. Rehman, M.I. Ali, N. Ali, M. Badshah, M. Iqbal, A. Jamal,
Z. Huang, Crude oil biodegradation potential of biosurfactantproducing
Pseudomonas aeruginosa and Meyerozyma sp., J. Hazard.
Mater., 418 (2021) 126276, doi: 10.1016/j.jhazmat.2021.126276.
- J. Mulinari, J.V. Oliveira, D. Hotza, Lipase immobilization on
ceramic supports: an overview on techniques and materials,
Biotechnol. Adv., 42 (2020) 107581.
- H. Nie, M. Nie, Z. Diwu, L. Wang, H. Yan, Y. Lin, B. Zhang,
Y. Wang, Biological treatment of high salinity and low
pH produced water in oilfield with immobilized cells of
P. aeruginosa NY3 in a pilot-scale, J. Hazard. Mater., 381 (2020)
121232, doi: 10.1016/j.jhazmat.2019.121232.
- X. Dai, Z. Wang, M. Xu, Progress in treatment of oily wastewater
by inorganic porous ceramic membrane, MATEC Web Conf.,
114 (2017) 02016, doi: 10.1051/matecconf/201711402016.
- M.B. Asif, Z. Zhang, Ceramic membrane technology for water
and wastewater treatment: a critical review of performance,
full-scale applications, membrane fouling and prospects, Chem.
Eng. J., 418 (2021) 129481, doi: 10.1016/j.cej.2021.129481.
- S.R.H. Abadi, M.R. Sebzari, M. Hemati, F. Rekabdar,
T. Mohammadi, Ceramic membrane performance in microfiltration
of oily wastewater, Desalination, 265 (2011) 222–228.
- B. Das, B. Chakrabarty, P. Barkakati, Preparation and
characterization of novel ceramic membranes for microfiltration
applications, Ceram. Int., 42 (2016) 14326–14333.