References

  1. O.A. Shabaan, H.S. Jahin, G.G. Mohamed, Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes, Arabian J. Chem., 13 (2020) 4797–4810.
  2. J. Mateo-Sagasta, S.M. Zadeh, H. Turral, J. Burke, Water Pollution From Agriculture: A Global Review, Executive Summary, UN-Water Family News, 2017.
  3. United Nations World Water Assessment Programme, World Water Development Report, Wastewater: The Untapped Resource, 2017. Available at: https://doi.org/10.1017/CBO9781107415324.004
  4. C.N.C. Hitam, A.A. Jalil, A review on exploration of Fe2O3 photocatalyst towards degradation of dyes and organic contaminants, J. Environ. Manage., 258 (2020) 110050, doi: 10.1016/j.jenvman.2019.110050.
  5. T.A. Nguyen, R.S. Juang, Treatment of waters and wastewaters containing sulfur dyes: a review, Chem. Eng. J., 219 (2013) 109–117.
  6. Y. Tang, M. Li, C. Mu, J. Zhou, B. Shi, Ultrafast and efficient removal of anionic dyes from wastewater by polyethyleneiminemodified silica nanoparticles, Chemosphere, 229 (2019) 570–579.
  7. S. Jorfi, G. Barzegar, M. Ahmadi, R. Darvishi Cheshmeh Soltani, N. Alah Jafarzadeh Haghighifard, A. Takdastan, R. Saeedi, M. Abtahi, Enhanced coagulation-photocatalytic treatment of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles, J. Environ. Manage., 177 (2016) 111–118.
  8. S.L. Chan, Y.P. Tan, A.H. Abdullah, S.T. Ong, Equilibrium, kinetic and thermodynamic studies of a new potential biosorbent for the removal of Basic blue 3 and Congo red dyes: pineapple (Ananas comosus) plant stem,
    J. Taiwan Inst. Chem. Eng., 61 (2016) 306–315.
  9. S. Benkhaya, S. M’rabet, A. El Harfi, A review on classifications, recent synthesis and applications of textile dyes, Inorg. Chem. Commun., 115 (2020) 107891, doi: 10.1016/j. inoche.2020.107891.
  10. D. Wen, W. Li, J. Lv, Z. Qiang, M. Li, Methylene blue degradation by the VUV/UV/persulfate process: effect of pH on the roles of photolysis and oxidation, J. Hazard. Mater., 391 (2020) 121855, doi:10.1016/j.jhazmat.2019.121855.
  11. B. Chen, Y. Liu, S. Chen, X. Zhao, X. Meng, X. Pan, Magnetically recoverable cross-linked polyethylenimine as a novel adsorbent for removal of anionic dyes with different structures from aqueous solution, J. Taiwan Inst. Chem. Eng., 67 (2016) 191–201.
  12. Z. Lü, F. Hu, H. Li, X. Zhang, S. Yu, M. Liu, C. Gao, Composite nanofiltration membrane with asymmetric selective separation layer for enhanced separation efficiency to anionic dye aqueous solution, J. Hazard. Mater., 368 (2019) 436–443.
  13. X. Wu, D. Zhang, F. Jiao, S. Wang, Visible-light-driven photodegradation of Methyl orange using Cu2O/ZnAl calcined layered double hydroxides as photocatalysts, Colloids Surf., A, 508 (2016) 110–116.
  14. K. Zhou, X.Y. Hu, B.Y. Chen, C.C. Hsueh, Q. Zhang, J. Wang, Y.J. Lin, C.T. Chang, Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity, Appl. Surf. Sci., 383 (2016) 300–309.
  15. C. Lv, S. Chen, Y. Xie, Z. Wei, L. Chen, J. Bao, C. He, W. Zhao, S. Sun, C. Zhao, Positively-charged polyethersulfone nanofibrous membranes for bacteria and anionic dyes removal, J. Colloid Interface Sci., 556 (2019) 492–502.
  16. M. Ikram, S. Ali, M. Aqeel, A. Ul-hamid, Reduced graphene oxide nanosheets doped by Cu with highly efficient visible light photocatalytic behavior, J. Alloys Compd., 837 (2020) 155588, doi:10.1016/j.jallcom.2020.155588.
  17. A.P. Angelika Tkaczyk, K. Mitrowska, Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review, Sci. Total Environ., 717 (2019) 137222, doi:10.1016/j.scitotenv.2020.137222.
  18. A.L. Desa, N.H.H. Hairom, L.Y. Ng, C.Y. Ng, M.K. Ahmad, A.W. Mohammad, Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration, J. Water Process Eng., 31 (2019) 100872, doi: 10.1016/j.jwpe.2019.100872.
  19. A. Khosravi, M. Karimi, H. Ebrahimi, N. Fallah, Sequencing batch reactor/nanofiltration hybrid method for water recovery from textile wastewater contained phthalocyanine dye and anionic surfactant, J. Environ. Chem. Eng., 8 (2020) 103701, doi: 10.1016/j.jece.2020.103701.
  20. S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir, M.Á. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
  21. Z. Chang, Y. Chen, S. Tang, J. Yang, Y. Chen, S. Chen, P. Li, Z. Yang, Construction of chitosan/polyacrylate/graphene oxide composite physical hydrogel by semi-dissolution/acidification/ sol–gel transition method and its simultaneous cationic and anionic dye adsorption properties, Carbohydr. Polym., 229 (2020) 115431, doi: 10.1016/j.carbpol.2019.115431.
  22. N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Abdullah, S.H. Paiman, N. Yusof, F. Aziz, Photocatalytic nanofibercoated alumina hollow fiber membranes for highly efficient oilfield produced water treatment, Chem. Eng. J., 360 (2019) 1437–1446.
  23. M.A. Mohamed, J. Jaafar, M.F.M. Zain, L.J. Minggu, M.B. Kassim, M.S. Rosmi, N.H. Alias, N.A.M. Nor, W.N.W. Salleh, M.H.D. Othman, In-depth understanding of core-shell nanoarchitecture evolution of g-C3N4@C,N co-doped anatase/rutile: efficient charge separation and enhanced visible-light photocatalytic performance, Appl. Surf. Sci., 436 (2018) 302–318.
  24. N.H. Alias, J. Jaafar, S. Samitsu, N. Yusof, M.H.D. Othman, M.A. Rahman, A.F. Ismail, F. Aziz, W.N.W. Salleh,
    N.H. Othman, Photocatalytic degradation of oilfield produced water using graphitic carbon nitride embedded in electrospun polyacrylonitrile nanofibers, Chemosphere, 204 (2018) 79–86.
  25. N.M. Viet, D.Q. Trung, B.L. Giang, N.L.M. Tri, P. Thao, T.H. Pham, F.Z. Kamand, T.M. Al Tahtamouni, Noble metaldoped graphitic carbon nitride photocatalyst for enhancement photocatalytic decomposition of antibiotic pollutant in wastewater under visible light, J. Water Process Eng., 32 (2019) 100954, doi:10.1016/j.jwpe.2019.100954.
  26. J. You, Y. Guo, R. Guo, X. Liu, A review of visible light-active photocatalysts for water disinfection: features and prospects, Chem. Eng. J., 373 (2019) 624–641.
  27. M. Xiao, B. Luo, S. Wang, L. Wang, Solar energy conversion on g-C3N4 photocatalyst: light harvesting, charge separation, and surface kinetics, J. Energy Chem., 27 (2018) 1111–1123.
  28. W. Wang, G. Huang, J.C. Yu, P.K. Wong, Advances in photocatalytic disinfection of bacteria: development of photocatalysts and mechanisms, J. Environ. Sci. (China), 34 (2015) 232–247.
  29. D. Maučec, A. Šuligoj, A. Ristić, G. Dražić, A. Pintar, N.N. Tušar, Titania versus zinc oxide nanoparticles on mesoporous silica supports as photocatalysts for removal of dyes from wastewater at neutral pH, Catal. Today, 310 (2018) 32–41.
  30. A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
  31. A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, T.I. Shaheen, Optimization of green biosynthesized visible light active CuO/ZnO nano-photocatalysts for the degradation of organic Methylene blue dye, Heliyon, 6 (2020) 1–13.
  32. S. Narzary, K. Alamelu, V. Raja, B.M.J. Ali, Visible light active, magnetically retrievable
    Fe3O4@SiO2@g-C3N4/TiO2 nanocomposite as efficient photocatalyst for removal of dye pollutants, J. Environ. Chem. Eng., 8 (2020) 1–9.
  33. R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang, Z. Tang, X. Wang, A critical review
    on visible-light-response CeO2-based photocatalysts with enhanced photooxidation of organic pollutants, Catal. Today, 335 (2019) 20–30.
  34. A. Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically recoverable graphitic carbon nitride and NiFe2O4 based magnetic photocatalyst for degradation of oxytetracycline antibiotic in simulated wastewater under solar light, J. Environ. Chem. Eng., 6 (2018) 3874–3883.
  35. Q. Zhou, F. Peng, Y. Ni, J. Kou, C. Lu, Long afterglow phosphor driven round-the-clock g-C3N4 photocatalyst,
    J. Photochem. Photobiol., A, 328 (2016) 182–188.
  36. A.V. Karim, A. Selvaraj, Graphene composites in photocatalytic oxidation of aqueous organic contaminants –
    a state of art, Process Saf. Environ. Prot., 146 (2021) 136–160.
  37. C. Min, Y. Mo, K. Kim, D. Wang, C. Su, Y. Yoon, Chemosphere potential utility of graphene-based nano spinel ferrites as adsorbent and photocatalyst for removing organic/inorganic contaminants from aqueous solutions: a mini review, Chemosphere, 221 (2019) 392–402.
  38. A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites, Nano Mater. Sci., 1 (2019) 31–47.
  39. M. Pedrosa, E.S. Da Silva, L.M. Pastrana-Martínez, G. Drazic, P. Falaras, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Hummers’ and Brodie’s graphene oxides as photocatalysts for phenol degradation, J. Colloid Interface Sci., 567 (2020) 243–255.
  40. N.F.D. Junaidi, N.H. Othman, M.Z. Shahruddin, N.H. Alias, F. Marpani, W. Lau, A.F. Ismail, Fabrication and characterization of grahene-polyethersulfne (GO-PES) composite flat sheet and hollow fiber membranes for oil-water separation, J. Chem. Technol. Biotechnol., 95 (2020) 1308–1320.
  41. N.F.D. Junaidi, N.A. Khalil, A.F. Jahari, N.Z.K. Shaari, M.Z. Shahruddin, N.H. Alias, N.H. Othman, Effect of graphene oxide (GO) on the surface morphology and hydrophilicity of polyethersulfone (PES), IOP Conf. Ser.: Mater. Sci. Eng., 358 (2018) 12047, http://stacks.iop.org/1757-899X/358/i=1/ a=012047.
  42. N.H. Othman, N.H. Alias, M.Z. Shahruddin, N.F. Abu Bakar, N.R. Nik Him, W.J. Lau, Adsorption kinetics of Methylene blue dyes onto magnetic graphene oxide, J. Environ. Chem. Eng., 6 (2018) 2803–2811.
  43. N.H. Othman, N.H. Alias, M.Z. Shahruddin, S.N.C.M. Hussein, A. Dollah, Supported graphene oxide hollow fibre membrane for oily wastewater treatment, AIP Conf. Proc., 1901 (2017) 020008, doi: 10.1063/1.5010445.
  44. N.H. Othman, A.F. Jahari, N.H. Alias, Demulsification of crude oil in water (O/W) emulsions using graphene oxide demulsification of crude oil in water (O/W) emulsions using graphene oxide, IOP Conf. Ser.: Mater. Sci. Eng., 458 (2018) 012023, doi: 10.1088/1757-899X/458/1/012023.
  45. C. Prasad, Q. Liu, H. Tang, G. Yuvaraja, J. Long, A. Rammohan, G.V. Zyryanov, An overview of graphene oxide supported semiconductors based photocatalysts: properties, synthesis and photocatalytic applications, J. Mol. Liq., 297 (2020) 111826, doi: 10.1016/j.molliq.2019.111826.
  46. A.T. Lawal, Graphene-based nano composites and their applications. A review, Biosens. Bioelectron., 141 (2019) 111384, doi: 10.1016/j.bios.2019.111384.
  47. Q. Hu, E. Rezaee, H. Shan, P. Liu, Z.X. Xu, Graphene oxide/NCuMe 2Pc nanorod hybrid nanocomposite as efficient visible light photocatalyst for aqueous Cr(VI) reduction, Catal. Today, 335 (2019) 180–186.
  48. M. Nadimi, A. Ziarati Saravani, M.A. Aroon, A. Ebrahimian Pirbazari, Photodegradation of Methylene blue by a ternary magnetic TiO2/Fe3O4/graphene oxide nanocomposite under visible light, Mater. Chem. Phys., 225 (2019) 464–474.
  49. N. Le Minh Tri, J. Kim, B.L. Giang, T.M. Al Tahtamouni, P.T. Huong, C. Lee, N.M. Viet, D. Quang Trung, Ag-doped graphitic carbon nitride photocatalyst with remarkably enhanced photocatalytic activity towards antibiotic in hospital wastewater under solar light, J. Ind. Eng. Chem., 80 (2019) 597–605.
  50. N.H. Alias, J. Jaafar, S. Samitsu, A.F. Ismail, N.A.M. Nor, N. Yusof, F. Aziz, Mechanistic insight of the formation of visible-light responsive nanosheet graphitic carbon nitride embedded polyacrylonitrile nanofibres for wastewater treatment, J. Water Process Eng., 33 (2020) 101015, doi: 10.1016/j.jwpe.2019.101015.
  51. N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail, S. Huda, N. Yusof, F. Aziz, Photocatalytic
    nanofiber-coated alumina hollow fiber membranes for highly efficient oilfield produced water treatment, Chem. Eng. J., 360 (2019) 1437–1446.
  52. N.H. Alias, J. Jaafar, S. Samitsu, A.F. Ismail, M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Yusof, F. Aziz,
    T.A.T. Mohd, Efficient removal of partially hydrolysed polyacrylamide in polymer-flooding produced water using photocatalytic graphitic carbon nitride nanofibres, Arabian J. Chem., 13 (2020) 4341–4349.
  53. M. Baca, W. Kukułka, K. Cendrowski, E. Mijowska, R.J. Kaleńczuk, B. Zielińska, Graphitic carbon nitride and titanium dioxide modified with 1 D and 2 D carbon structures for photocatalysis, ChemSusChem, 12 (2019) 612–620.
  54. M. Chegeni, Z. Mousavi, M. Soleymani, S. Dehdashtian, Removal of aspirin from aqueous solutions using graphitic carbon nitride nanosheet: theoretical and experimental studies, Diamond Relat. Mater., 101 (2020) 107621, doi: 10.1016/j. diamond.2019.107621.
  55. Y. Jia, H. Ma, W. Zhang, G. Zhu, W. Yang, N. Son, M. Kang, C. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: reusable, magnetic catalysts for enhanced photocatalytic CO2 reduction, Chem. Eng. J., 383 (2020) 123172, doi: 10.1016/j.cej.2019.123172.
  56. X. Li, J. Xiong, X. Gao, J. Huang, Z. Feng, Z. Chen, Y. Zhu, Recent advances in 3D g-C3N4 composite photocatalysts for photocatalytic water splitting, degradation of pollutants and CO2 reduction, J. Alloys Compd., 802 (2019) 196–209.
  57. J. Zhao, Y. Liu, Y. Wang, H. Li, J. Wang, Z. Li, Boron-doped graphitic carbon nitride dots dispersed on graphitic carbon nitride/graphene hybrid nanosheets as high performance photocatalysts for hydrogen evolution reaction, Appl. Surf. Sci. J., 470 (2019) 923–932.
  58. V. Hasija, P. Raizada, V.K. Thakur, A.A. Parwaz Khan, A.M. Asiri, P. Singh, An overview of strategies for enhancement in photocatalytic oxidative ability of MoS2 for water purification, J. Environ. Chem. Eng., 8 (2020) 1–21.
  59. S. Chen, F. Yang, Z. Cao, C. Yu, S. Wang, H. Zhong, Enhanced photocatalytic activity of molybdenum disulfide by compositing ZnAl–LDH, Colloids Surf., A, 586 (2020) 124140, doi: 10.1016/j.colsurfa.2019.124140.
  60. M. Zhao, Z. Ye, R. Suzuki, Y. Ye, H.Y. Zhu, J. Xiao, Y. Wang, Y. Iwasa, X. Zhang, Atomically phase-matched secondharmonic generation in a 2D crystal, Light Sci. Appl., 5 (2016) 1–6.
  61. K. Sun, F. Jia, B. Yang, C. Lin, X. Li, S. Song, Synergistic effect in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst, Appl. Mater. Today, 18 (2020) 100453, doi: 10.1016/j.apmt.2019.100453.
  62. M. Al Kausor, D. Chakrabortty, Graphene oxide-based semiconductor photocatalysts for degradation of organic dye in wastewater: a review on fabrication, performance enhancement and challenges, Inorg. Chem. Commun., 129 (2021) 108630, doi: 10.1016/J.INOCHE.2021.108630.
  63. Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, Threedimensional porous aerogel constructed by g-C3N4 and graphene oxide nanosheets with excellent visible-light photocatalytic performance, ACS Appl. Mater. Interfaces, 7 (2015) 25693–25701.
  64. E. Suvaci, E. Özel, Hydrothermal Synthesis, M. Pomeroy, Ed., Encyclopedia of Materials: Technical Ceramics and Glasses, Elsevier, Amsterdam, Netherlands, 2021, pp. 59–68.
  65. O. Akhavan, Graphene nanomesh by ZnO nanorod photocatalysts, ACS Nano, 4 (2010) 4174–4180.
  66. M. Hong Wu, L. Li, Y. Cheng Xue, G. Xu, L. Tang, N. Liu, W. Yuan Huang, Fabrication of ternary
    GO/g-C3N4/MoS2 flowerlike heterojunctions with enhanced photocatalytic activity for water remediation, Appl. Catal., B, 228 (2018) 103–112.
  67. I. Ahmad, S. Shukrullah, M. Ahmad, E. Ahmed, M.Y. Naz, M.S. Akhtar, N.R. Khalid, A. Hussain, I. Hussain, Effect of Al doping on the photocatalytic activity of ZnO nanoparticles decorated on CNTs and graphene: solvothermal synthesis and study of experimental parameters, Mater. Sci. Semicond. Process., 123 (2021) 105584, doi:10.1016/J.MSSP.2020.105584.
  68. B.G. Rao, D. Mukherjee, B.M. Reddy, Chapter 1 – Novel approaches for preparation of nanoparticles, D. Ficai, A.M. Grumezescu, Ed., Nanostructures for Novel Therapy: Synthesis, Characterization and Applications Micro and Nano Technologies, Elsevier, Amsterdam, Netherlands, 2017, pp. 1–36.
  69. W.-K. Jo, N.Clament Sagaya Selvam, Enhanced visible lightdriven photocatalytic performance of ZnO-g-C3N4 coupled with graphene oxide as a novel ternary nanocomposite, J. Hazard. Mater., 299 (2015) 462–470.
  70. J. Yan, Z. Song, X. Wang, Y. Xu, W. Pu, H. Xu, S. Yuan, H. Li, Enhanced photocatalytic activity of ternary
    Ag3PO4/GO/g-C3N4 photocatalysts for Rhodamine B degradation under visible light radiation, Appl. Surf. Sci., 466 (2019) 70–77.
  71. M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Microwaveassisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics, Acc. Chem. Res., 47 (2014) 1338–1348.
  72. K.-Y. Shih, Y.-L. Kuan, E.-R. Wang, One-step microwave-assisted synthesis and visible-light photocatalytic activity enhancement of BiOBr/RGO nanocomposites for degradation of Methylene blue, Materials (Basel), 14 (2021) 4577, doi: 10.3390/MA14164577.
  73. F. Khurshid, M. Jeyavelan, S. Nagarajan, Photocatalytic dye degradation by graphene oxide doped transition metal catalysts, Synth. Met., 278 (2021) 116832, doi: 10.1016/J. SYNTHMET.2021.116832.
  74. S. Kumar, A. Kumar, Chemically derived luminescent graphene oxide nanosheets and its sunlight driven photocatalytic activity against Methylene blue dye, Opt. Mater. (Amst), 62 (2016) 320–327.
  75. K. Govindan, A.K. Suresh, T. Sakthivel, K. Murugesan, R. Mohan, V. Gunasekaran, A. Jang, Effect of peroxomonosulfate, peroxodisulfate and hydrogen peroxide on graphene oxide photocatalytic performances in Methyl orange dye degradation, Chemosphere, 237 (2019) 124479,
    doi: 10.1016/J. CHEMOSPHERE.2019.124479.
  76. M. Maruthupandy, P. Qin, T. Muneeswaran, G. Rajivgandhi, F. Quero, J.M. Song, Graphene-zinc oxide nanocomposites (G-ZnO NCs): synthesis, characterization and their photocatalytic degradation of dye molecules, Mater. Sci. Eng. B, 254 (2020) 114516, doi: 10.1016/J.MSEB.2020.114516.
  77. S. Das, P. Somu, S. Paul, Visible light induced efficient photocatalytic degradation of azo dye into nontoxic byproducts by CdSe quantum dot conjugated nano graphene oxide, J. Mol. Liq., 340 (2021) 117055, doi:10.1016/J.MOLLIQ.2021.117055.
  78. M. Beaula Ruby Kamalam, S.S.R. Inbanathan, K. Sethuraman, A. Umar, H. Algadi, A.A. Ibrahim, Q.I. Rahman, C.S. Garoufalis, S. Baskoutas, Direct sunlight-driven enhanced photocatalytic performance of V2O5 nanorods/graphene oxide nanocomposites for the degradation of Victoria blue dye, Environ. Res., 199 (2021) 111369, doi: 10.1016/j.envres.2021.111369.
  79. Z. Fu, B. Qin, X. Guo, Y. Wang, Y. Xu, Q. Qiao, Q. Wang, F. Wang, S. Gao, Z. Yang, Enhancement of photocatalytic dye degradation and photoconversion capacity of graphene oxide/SnO2 nanocomposites, J. Alloys Compd., 898 (2022) 162796, doi: 10.1016/j.jallcom.2003.10.002.
  80. D. Sivaraj, K. Vijayalakshmi, M. Srinivasan, P. Ramasamy, Graphene oxide reinforced bismuth titanate for photocatalytic degradation of azo dye (DB15) prepared by hydrothermal method, Ceram. Int., 47 (2021) 25074–25080.
  81. Z. Huang, Z. Lai, D. Zhu, H. Wang, C. Zhao, G. Ruan, F. Du, Electrospun graphene
    oxide/MIL-101(Fe)/poly(acrylonitrile-comaleic acid) nanofiber: a high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples, J. Colloid Interface Sci., 597 (2021) 196–205.
  82. F. Anjum, A.M. Asiri, M.A. Khan, M.I. Khan, S.B. Khan, K. Akhtar, E.M. Bakhsh, K.A. Alamry, S.Y. Alfifi,
    S. Chakraborty, Photodegradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites, J. Mater. Res. Technol., 15 (2021) 3171–3191.
  83. V. Kumaran, P. Sudhagar, A.K. Konga, G. Ponniah, Photocatalytic Degradation of synthetic organic reactive dye wastewater using GO-TiO2 nanocomposite, Polish J. Environ. Stud., 29 (2020) 1683–1690.
  84. T. Liu, Z. Wang, X. Wang, G. Yang, Y. Liu, Adsorptionphotocatalysis performance of polyaniline/dicarboxyl acid cellulose@graphene oxide for dye removal, Int. J. Biol. Macromol., 182 (2021) 492–501.
  85. S.S. Park, S.-W. Chu, C. Xue, D. Zhao, C.-S. Ha, Facile synthesis of mesoporous carbon nitrides using the incipient wetness method and the application as hydrogen adsorbent, J. Mater. Chem., 21 (2011) 10801, doi:10.1039/c1jm10849b.
  86. G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse, G.T.M. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride nanosheet electrode-based high-performance ionic actuator, Nat. Commun., 6 (2015), doi:10.1038/ncomms8258.
  87. J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic carbon nitride as efficient visible light photocatalyst for hydrogen evolution, J. Mater. Chem. A, 3 (2015) 13819–13826.
  88. Y.-Q. Dong, M. Wang, L. Chen, M.-J. Li, Preparation, characterization of P(VDF-HFP)/[bmim]BF4 ionic liquids hybrid membranes and their pervaporation performance for ethyl acetate recovery from water, Desalination, 295 (2012) 53–60.
  89. Y.S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, A. Thomas, From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres, Adv. Funct. Mater., 23 (2013) 3661–3667.
  90. P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon nitride nanosheets for improved photocatalytic activities, Adv. Funct. Mater., 22 (2012) 4763–4770.
  91. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, X. Wang, P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light, J. Adv. Mater., 25 (2013) 2452–2456.
  92. T. Xu, F. Wu, Y. Gu, Y. Chen, J. Cai, W. Lu, H. Hu, Z. Zhu, W. Chen, Visible-light responsive electrospun nanofibers based on polyacrylonitrile-dispersed graphitic carbon nitride, RSC Adv., 5 (2015) 86505–86512.
  93. Y. Guo, R. Wang, P. Wang, Y. Li, C. Wang, Developing polyetherimide/graphitic carbon nitride floating photocatalyst with good photodegradation performance of Methyl orange under light irradiation, Chemosphere, 179 (2017) 84–91.
  94. M. Ben Abdelaziz, B. Chouchene, L. Balan, T. Gries, G. Medjahdi, H. Ezzaouia, R. Schneider, One pot synthesis of bismuth oxide/graphitic carbon nitride composites with high photocatalytic activity, Mol. Catal., 463 (2019) 110–118.
  95. Z. Wang, J. Lv, J. Zhang, K. Dai, C. Liang, Facile synthesis of Z-scheme BiVO4/porous graphite carbon nitride heterojunction for enhanced visible-light-driven photocatalyst, Appl. Surf. Sci., 430 (2018) 595–602.
  96. M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria, Magnetically recoverable Fe3O4/g-C3N4 composite for photocatalytic production of benzaldehyde under UV-LED radiation, Catal. Today, 328 (2019) 293–299.
  97. M. Mousavi, A. Habibi-yangjeh, Novel magnetically separable g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible light-driven photocatalysts with highly enhanced activity, Adv. Powder Technol., 28 (2017) 1540–1553.
  98. Y. Zhong, Y. Lin, Q. Chen, Y. Sun, F.F. Fu, Rapid photodegradation of various organic dyes with thin-layer borondoped graphitic carbon nitride nano-sheets under visible light irradiation, J. Environ. Chem. Eng., 8 (2020) 103567, doi: 10.1016/j.jece.2019.103567.
  99. T.K.A. Nguyen, T.T. Pham, H. Nguyen-Phu, E.W. Shin, The effect of graphitic carbon nitride precursors on the photocatalytic dye degradation of water-dispersible graphitic carbon nitride photocatalysts, Appl. Surf. Sci., 537 (2021) 148027, doi: 10.1016/j.apsusc.2020.148027.
  100. N. Masunga, B.B. Mamba, K.K. Kefeni, Trace samarium doped graphitic carbon nitride photocatalytic activity toward Metanil yellow dye degradation under visible light irradiation, Colloids Surf., A, 602 (2020) 125107, doi: 10.1016/j.colsurfa.2020.125107.
  101. S.K. Kuila, R. Sarkar, P. Kumbhakar, P. Kumbhakar, C.S. Tiwary, T.K. Kundu, Photocatalytic dye degradation under sunlight irradiation using cerium ion adsorbed twodimensional graphitic carbon nitride, J. Environ. Chem. Eng., 8 (2020) 103942, doi: 10.1016/j.jece.2020.103942.
  102. F.T. Bekena, D.H. Kuo, W.L. Kebede, Universal and highly efficient degradation performance of novel
    Bi2(O,S)3/Mo(O,S)2 nanocomposite photocatalyst under visible light, Sep. Purif. Technol., 247 (2020) 117042, doi: 10.1016/j.seppur.2020.117042.
  103. Y. Zeng, N. Guo, Y. Song, Y. Zhao, H. Li, X. Xu, J. Qiu, H. Yu, Fabrication of Z-scheme magnetic MoS2/CoFe2O4 nanocomposites with highly efficient photocatalytic activity, J. Colloid Interface Sci., 514 (2018) 664–674.
  104. N. Guo, H. Li, X. Xu, H. Yu, Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: enhanced and stable photocatalytic performance for water purification under visible light irradiation, Appl. Surf. Sci., 389 (2016) 227–239.
  105. Y. Sun, J. Tan, H. Lin, X. Wang, J. Liu, Y. Li, C. Wang, A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light, J. Colloid Interface Sci., 516 (2018) 138–144.
  106. P. Nandigana, M. Sanchayan, D. Manjubashini, P. Basudev, B. Subramanian, S.K. Panda, Lyophilized tin-doped MoS2 as an efficient photocatalyst for overall degradation of Rhodamine B dye, J. Alloys Compd., 907 (2022) 164470, doi: 10.1016/j.jallcom.2005.05.002.
  107. D. Gawari, V. Pandit, N. Jawale, P. Kamble, Layered MoS2 for photocatalytic dye degradation, Mater. Today Proc., 53 (2022) 10–14.
  108. P. Sharma, M.K. Singh, M.S. Mehata, Sunlight-driven MoS2 nanosheets mediated degradation of dye
    (Crystal violet) for wastewater treatment, J. Mol. Struct., 1249 (2022) 131651, doi:10.1016/j.molstruc.2021.131651.
  109. X. Zhang, K. Fu, Z. Su, Fabrication of 3D MoS2-TiO2@PAN electro-spun membrane for efficient and recyclable photocatalytic degradation of organic dyes, Mater. Sci. Eng., B, 269 (2021) 115179, doi:10.1016/j.mseb.2021.115179.
  110. S. Chen, Y. Di, H. Li, M. Wang, B. Jia, R. Xu, X. Liu, Efficient photocatalytic dye degradation by flower-like
    MoS2/SrFe12O19 heterojunction under visible light, Appl. Surf. Sci., 559 (2021) 149855, doi:10.1016/j.apsusc.2021.149855.