References
- O.A. Shabaan, H.S. Jahin, G.G. Mohamed, Removal of anionic
and cationic dyes from wastewater by adsorption using
multiwall carbon nanotubes, Arabian J. Chem., 13 (2020)
4797–4810.
- J. Mateo-Sagasta, S.M. Zadeh, H. Turral, J. Burke, Water
Pollution From Agriculture: A Global Review, Executive
Summary, UN-Water Family News, 2017.
- United Nations World Water Assessment Programme, World
Water Development Report, Wastewater: The Untapped
Resource, 2017. Available at: https://doi.org/10.1017/CBO9781107415324.004
- C.N.C. Hitam, A.A. Jalil, A review on exploration of Fe2O3
photocatalyst towards degradation of dyes and organic
contaminants, J. Environ. Manage., 258 (2020) 110050,
doi: 10.1016/j.jenvman.2019.110050.
- T.A. Nguyen, R.S. Juang, Treatment of waters and wastewaters
containing sulfur dyes: a review, Chem. Eng. J., 219 (2013)
109–117.
- Y. Tang, M. Li, C. Mu, J. Zhou, B. Shi, Ultrafast and efficient
removal of anionic dyes from wastewater by polyethyleneiminemodified
silica nanoparticles, Chemosphere, 229 (2019) 570–579.
- S. Jorfi, G. Barzegar, M. Ahmadi, R. Darvishi Cheshmeh Soltani,
N. Alah Jafarzadeh Haghighifard, A. Takdastan, R. Saeedi,
M. Abtahi, Enhanced coagulation-photocatalytic treatment
of Acid red 73 dye and real textile wastewater using UVA/synthesized MgO nanoparticles, J. Environ. Manage., 177 (2016)
111–118.
- S.L. Chan, Y.P. Tan, A.H. Abdullah, S.T. Ong, Equilibrium,
kinetic and thermodynamic studies of a new potential
biosorbent for the removal of Basic blue 3 and Congo red dyes:
pineapple (Ananas comosus) plant stem,
J. Taiwan Inst. Chem.
Eng., 61 (2016) 306–315.
- S. Benkhaya, S. M’rabet, A. El Harfi, A review on
classifications, recent synthesis and applications of textile
dyes, Inorg. Chem. Commun., 115 (2020) 107891, doi: 10.1016/j.
inoche.2020.107891.
- D. Wen, W. Li, J. Lv, Z. Qiang, M. Li, Methylene blue degradation
by the VUV/UV/persulfate process: effect of pH on the roles of
photolysis and oxidation, J. Hazard. Mater., 391 (2020) 121855,
doi:10.1016/j.jhazmat.2019.121855.
- B. Chen, Y. Liu, S. Chen, X. Zhao, X. Meng, X. Pan, Magnetically
recoverable cross-linked polyethylenimine as a novel
adsorbent for removal of anionic dyes with different structures
from aqueous solution, J. Taiwan Inst. Chem. Eng., 67 (2016)
191–201.
- Z. Lü, F. Hu, H. Li, X. Zhang, S. Yu, M. Liu, C. Gao, Composite
nanofiltration membrane with asymmetric selective separation
layer for enhanced separation efficiency to anionic dye aqueous
solution, J. Hazard. Mater., 368 (2019) 436–443.
- X. Wu, D. Zhang, F. Jiao, S. Wang, Visible-light-driven
photodegradation of Methyl orange using Cu2O/ZnAl calcined
layered double hydroxides as photocatalysts, Colloids Surf., A,
508 (2016) 110–116.
- K. Zhou, X.Y. Hu, B.Y. Chen, C.C. Hsueh, Q. Zhang, J. Wang,
Y.J. Lin, C.T. Chang, Synthesized TiO2/ZSM-5 composites used
for the photocatalytic degradation of azo dye: intermediates,
reaction pathway, mechanism and bio-toxicity, Appl. Surf. Sci.,
383 (2016) 300–309.
- C. Lv, S. Chen, Y. Xie, Z. Wei, L. Chen, J. Bao, C. He,
W. Zhao, S. Sun, C. Zhao, Positively-charged polyethersulfone
nanofibrous membranes for bacteria and anionic dyes removal,
J. Colloid Interface Sci., 556 (2019) 492–502.
- M. Ikram, S. Ali, M. Aqeel, A. Ul-hamid, Reduced graphene
oxide nanosheets doped by Cu with highly efficient visible light
photocatalytic behavior, J. Alloys Compd., 837 (2020) 155588,
doi:10.1016/j.jallcom.2020.155588.
- A.P. Angelika Tkaczyk, K. Mitrowska, Synthetic organic dyes as
contaminants of the aquatic environment and their implications
for ecosystems: a review, Sci. Total Environ., 717 (2019) 137222,
doi:10.1016/j.scitotenv.2020.137222.
- A.L. Desa, N.H.H. Hairom, L.Y. Ng, C.Y. Ng, M.K. Ahmad,
A.W. Mohammad, Industrial textile wastewater treatment
via membrane photocatalytic reactor (MPR) in the presence
of ZnO-PEG nanoparticles and tight ultrafiltration, J. Water
Process Eng., 31 (2019) 100872, doi: 10.1016/j.jwpe.2019.100872.
- A. Khosravi, M. Karimi, H. Ebrahimi, N. Fallah, Sequencing
batch reactor/nanofiltration hybrid method for water recovery
from textile wastewater contained phthalocyanine dye and
anionic surfactant, J. Environ. Chem. Eng., 8 (2020) 103701,
doi: 10.1016/j.jece.2020.103701.
- S. Hube, M. Eskafi, K.F. Hrafnkelsdóttir, B. Bjarnadóttir,
M.Á. Bjarnadóttir, S. Axelsdóttir, B. Wu, Direct membrane
filtration for wastewater treatment and resource recovery: a
review, Sci. Total Environ., 710 (2020) 136375, doi: 10.1016/j.scitotenv.2019.136375.
- Z. Chang, Y. Chen, S. Tang, J. Yang, Y. Chen, S. Chen, P. Li,
Z. Yang, Construction of chitosan/polyacrylate/graphene oxide
composite physical hydrogel by semi-dissolution/acidification/
sol–gel transition method and its simultaneous cationic
and anionic dye adsorption properties, Carbohydr. Polym.,
229 (2020) 115431, doi: 10.1016/j.carbpol.2019.115431.
- N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail,
M.H.D. Othman, M.A. Rahman, N.H. Othman, N. Abdullah,
S.H. Paiman, N. Yusof, F. Aziz, Photocatalytic nanofibercoated
alumina hollow fiber membranes for highly efficient
oilfield produced water treatment, Chem. Eng. J., 360 (2019)
1437–1446.
- M.A. Mohamed, J. Jaafar, M.F.M. Zain, L.J. Minggu, M.B. Kassim,
M.S. Rosmi, N.H. Alias, N.A.M. Nor, W.N.W. Salleh, M.H.D.
Othman, In-depth understanding of core-shell nanoarchitecture
evolution of g-C3N4@C,N co-doped anatase/rutile: efficient
charge separation and enhanced visible-light photocatalytic
performance, Appl. Surf. Sci., 436 (2018) 302–318.
- N.H. Alias, J. Jaafar, S. Samitsu, N. Yusof, M.H.D. Othman,
M.A. Rahman, A.F. Ismail, F. Aziz, W.N.W. Salleh,
N.H. Othman, Photocatalytic degradation of oilfield produced
water using graphitic carbon nitride embedded in electrospun
polyacrylonitrile nanofibers, Chemosphere, 204 (2018) 79–86.
- N.M. Viet, D.Q. Trung, B.L. Giang, N.L.M. Tri, P. Thao,
T.H. Pham, F.Z. Kamand, T.M. Al Tahtamouni, Noble metaldoped
graphitic carbon nitride photocatalyst for enhancement
photocatalytic decomposition of antibiotic pollutant in
wastewater under visible light, J. Water Process Eng., 32 (2019)
100954, doi:10.1016/j.jwpe.2019.100954.
- J. You, Y. Guo, R. Guo, X. Liu, A review of visible light-active
photocatalysts for water disinfection: features and prospects,
Chem. Eng. J., 373 (2019) 624–641.
- M. Xiao, B. Luo, S. Wang, L. Wang, Solar energy conversion on
g-C3N4 photocatalyst: light harvesting, charge separation, and
surface kinetics, J. Energy Chem., 27 (2018) 1111–1123.
- W. Wang, G. Huang, J.C. Yu, P.K. Wong, Advances in
photocatalytic disinfection of bacteria: development of
photocatalysts and mechanisms, J. Environ. Sci. (China),
34 (2015) 232–247.
- D. Maučec, A. Šuligoj, A. Ristić, G. Dražić, A. Pintar, N.N. Tušar,
Titania versus zinc oxide nanoparticles on mesoporous silica
supports as photocatalysts for removal of dyes from wastewater
at neutral pH, Catal. Today, 310 (2018) 32–41.
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide
photocatalysis, J. Photochem. Photobiol., C, 1 (2000) 1–21.
- A. Fouda, S.S. Salem, A.R. Wassel, M.F. Hamza, T.I. Shaheen,
Optimization of green biosynthesized visible light active
CuO/ZnO nano-photocatalysts for the degradation of organic
Methylene blue dye, Heliyon, 6 (2020) 1–13.
- S. Narzary, K. Alamelu, V. Raja, B.M.J. Ali, Visible light
active, magnetically retrievable
Fe3O4@SiO2@g-C3N4/TiO2
nanocomposite as efficient photocatalyst for removal of dye
pollutants, J. Environ. Chem. Eng., 8 (2020) 1–9.
- R. Ma, S. Zhang, T. Wen, P. Gu, L. Li, G. Zhao, F. Niu, Q. Huang,
Z. Tang, X. Wang, A critical review
on visible-light-response
CeO2-based photocatalysts with enhanced photooxidation of
organic pollutants, Catal. Today, 335 (2019) 20–30.
- A. Sudhaik, P. Raizada, P. Shandilya, P. Singh, Magnetically
recoverable graphitic carbon nitride and NiFe2O4 based
magnetic photocatalyst for degradation of oxytetracycline
antibiotic in simulated wastewater under solar light, J. Environ.
Chem. Eng., 6 (2018) 3874–3883.
- Q. Zhou, F. Peng, Y. Ni, J. Kou, C. Lu, Long afterglow phosphor
driven round-the-clock g-C3N4 photocatalyst,
J. Photochem.
Photobiol., A, 328 (2016) 182–188.
- A.V. Karim, A. Selvaraj, Graphene composites in photocatalytic
oxidation of aqueous organic contaminants –
a state of art,
Process Saf. Environ. Prot., 146 (2021) 136–160.
- C. Min, Y. Mo, K. Kim, D. Wang, C. Su, Y. Yoon, Chemosphere
potential utility of graphene-based nano spinel ferrites as
adsorbent and photocatalyst for removing organic/inorganic
contaminants from aqueous solutions: a mini review,
Chemosphere, 221 (2019) 392–402.
- A.T. Smith, A.M. LaChance, S. Zeng, B. Liu, L. Sun, Synthesis,
properties, and applications of graphene oxide/reduced
graphene oxide and their nanocomposites, Nano Mater. Sci.,
1 (2019) 31–47.
- M. Pedrosa, E.S. Da Silva, L.M. Pastrana-Martínez, G. Drazic,
P. Falaras, J.L. Faria, J.L. Figueiredo, A.M.T. Silva, Hummers’
and Brodie’s graphene oxides as photocatalysts for phenol
degradation, J. Colloid Interface Sci., 567 (2020) 243–255.
- N.F.D. Junaidi, N.H. Othman, M.Z. Shahruddin, N.H. Alias,
F. Marpani, W. Lau, A.F. Ismail, Fabrication and characterization
of grahene-polyethersulfne (GO-PES) composite flat sheet and
hollow fiber membranes for oil-water separation, J. Chem.
Technol. Biotechnol., 95 (2020) 1308–1320.
- N.F.D. Junaidi, N.A. Khalil, A.F. Jahari, N.Z.K. Shaari,
M.Z. Shahruddin, N.H. Alias, N.H. Othman, Effect of graphene
oxide (GO) on the surface morphology and hydrophilicity
of polyethersulfone (PES), IOP Conf. Ser.: Mater. Sci. Eng.,
358 (2018) 12047, http://stacks.iop.org/1757-899X/358/i=1/
a=012047.
- N.H. Othman, N.H. Alias, M.Z. Shahruddin, N.F. Abu Bakar,
N.R. Nik Him, W.J. Lau, Adsorption kinetics of Methylene blue
dyes onto magnetic graphene oxide, J. Environ. Chem. Eng.,
6 (2018) 2803–2811.
- N.H. Othman, N.H. Alias, M.Z. Shahruddin, S.N.C.M. Hussein,
A. Dollah, Supported graphene oxide hollow fibre membrane
for oily wastewater treatment, AIP Conf. Proc., 1901 (2017)
020008, doi: 10.1063/1.5010445.
- N.H. Othman, A.F. Jahari, N.H. Alias, Demulsification of
crude oil in water (O/W) emulsions using graphene oxide
demulsification of crude oil in water (O/W) emulsions using
graphene oxide, IOP Conf. Ser.: Mater. Sci. Eng., 458 (2018)
012023, doi: 10.1088/1757-899X/458/1/012023.
- C. Prasad, Q. Liu, H. Tang, G. Yuvaraja, J. Long, A. Rammohan,
G.V. Zyryanov, An overview of graphene oxide supported
semiconductors based photocatalysts: properties, synthesis
and photocatalytic applications, J. Mol. Liq., 297 (2020) 111826,
doi: 10.1016/j.molliq.2019.111826.
- A.T. Lawal, Graphene-based nano composites and their
applications. A review, Biosens. Bioelectron., 141 (2019) 111384,
doi: 10.1016/j.bios.2019.111384.
- Q. Hu, E. Rezaee, H. Shan, P. Liu, Z.X. Xu, Graphene oxide/NCuMe
2Pc nanorod hybrid nanocomposite as efficient visible
light photocatalyst for aqueous Cr(VI) reduction, Catal. Today,
335 (2019) 180–186.
- M. Nadimi, A. Ziarati Saravani, M.A. Aroon, A. Ebrahimian
Pirbazari, Photodegradation of Methylene blue by a ternary
magnetic TiO2/Fe3O4/graphene oxide nanocomposite under
visible light, Mater. Chem. Phys., 225 (2019) 464–474.
- N. Le Minh Tri, J. Kim, B.L. Giang, T.M. Al Tahtamouni,
P.T. Huong, C. Lee, N.M. Viet, D. Quang Trung, Ag-doped
graphitic carbon nitride photocatalyst with remarkably
enhanced photocatalytic activity towards antibiotic in hospital
wastewater under solar light, J. Ind. Eng. Chem., 80 (2019)
597–605.
- N.H. Alias, J. Jaafar, S. Samitsu, A.F. Ismail, N.A.M. Nor,
N. Yusof, F. Aziz, Mechanistic insight of the formation of
visible-light responsive nanosheet graphitic carbon nitride
embedded polyacrylonitrile nanofibres for wastewater
treatment, J. Water Process Eng., 33 (2020) 101015,
doi: 10.1016/j.jwpe.2019.101015.
- N.H. Alias, J. Jaafar, S. Samitsu, T. Matsuura, A.F. Ismail,
S. Huda, N. Yusof, F. Aziz, Photocatalytic
nanofiber-coated
alumina hollow fiber membranes for highly efficient oilfield
produced water treatment, Chem. Eng. J., 360 (2019) 1437–1446.
- N.H. Alias, J. Jaafar, S. Samitsu, A.F. Ismail, M.H.D. Othman,
M.A. Rahman, N.H. Othman, N. Yusof, F. Aziz,
T.A.T. Mohd,
Efficient removal of partially hydrolysed polyacrylamide
in polymer-flooding produced water using photocatalytic
graphitic carbon nitride nanofibres, Arabian J. Chem., 13 (2020)
4341–4349.
- M. Baca, W. Kukułka, K. Cendrowski, E. Mijowska,
R.J. Kaleńczuk, B. Zielińska, Graphitic carbon nitride and
titanium dioxide modified with 1 D and 2 D carbon structures
for photocatalysis, ChemSusChem, 12 (2019) 612–620.
- M. Chegeni, Z. Mousavi, M. Soleymani, S. Dehdashtian,
Removal of aspirin from aqueous solutions using graphitic
carbon nitride nanosheet: theoretical and experimental studies,
Diamond Relat. Mater., 101 (2020) 107621, doi: 10.1016/j.
diamond.2019.107621.
- Y. Jia, H. Ma, W. Zhang, G. Zhu, W. Yang, N. Son, M. Kang,
C. Liu, Z-scheme SnFe2O4-graphitic carbon nitride: reusable,
magnetic catalysts for enhanced photocatalytic CO2 reduction,
Chem. Eng. J., 383 (2020) 123172, doi: 10.1016/j.cej.2019.123172.
- X. Li, J. Xiong, X. Gao, J. Huang, Z. Feng, Z. Chen, Y. Zhu,
Recent advances in 3D g-C3N4 composite photocatalysts for
photocatalytic water splitting, degradation of pollutants and
CO2 reduction, J. Alloys Compd., 802 (2019) 196–209.
- J. Zhao, Y. Liu, Y. Wang, H. Li, J. Wang, Z. Li, Boron-doped
graphitic carbon nitride dots dispersed on graphitic carbon
nitride/graphene hybrid nanosheets as high performance
photocatalysts for hydrogen evolution reaction, Appl. Surf. Sci.
J., 470 (2019) 923–932.
- V. Hasija, P. Raizada, V.K. Thakur, A.A. Parwaz Khan,
A.M. Asiri, P. Singh, An overview of strategies for enhancement
in photocatalytic oxidative ability of MoS2 for water purification,
J. Environ. Chem. Eng., 8 (2020) 1–21.
- S. Chen, F. Yang, Z. Cao, C. Yu, S. Wang, H. Zhong, Enhanced
photocatalytic activity of molybdenum disulfide by compositing
ZnAl–LDH, Colloids Surf., A, 586 (2020) 124140, doi: 10.1016/j.colsurfa.2019.124140.
- M. Zhao, Z. Ye, R. Suzuki, Y. Ye, H.Y. Zhu, J. Xiao, Y. Wang,
Y. Iwasa, X. Zhang, Atomically phase-matched secondharmonic
generation in a 2D crystal, Light Sci. Appl., 5 (2016)
1–6.
- K. Sun, F. Jia, B. Yang, C. Lin, X. Li, S. Song, Synergistic effect
in the reduction of Cr(VI) with Ag-MoS2 as photocatalyst, Appl.
Mater. Today, 18 (2020) 100453, doi: 10.1016/j.apmt.2019.100453.
- M. Al Kausor, D. Chakrabortty, Graphene oxide-based
semiconductor photocatalysts for degradation of organic dye in
wastewater: a review on fabrication, performance enhancement
and challenges, Inorg. Chem. Commun., 129 (2021) 108630,
doi: 10.1016/J.INOCHE.2021.108630.
- Z. Tong, D. Yang, J. Shi, Y. Nan, Y. Sun, Z. Jiang, Threedimensional
porous aerogel constructed by g-C3N4 and
graphene oxide nanosheets with excellent visible-light
photocatalytic performance, ACS Appl. Mater. Interfaces,
7 (2015) 25693–25701.
- E. Suvaci, E. Özel, Hydrothermal Synthesis, M. Pomeroy, Ed.,
Encyclopedia of Materials: Technical Ceramics and Glasses,
Elsevier, Amsterdam, Netherlands, 2021, pp. 59–68.
- O. Akhavan, Graphene nanomesh by ZnO nanorod
photocatalysts, ACS Nano, 4 (2010) 4174–4180.
- M. Hong Wu, L. Li, Y. Cheng Xue, G. Xu, L. Tang, N. Liu,
W. Yuan Huang, Fabrication of ternary
GO/g-C3N4/MoS2 flowerlike
heterojunctions with enhanced photocatalytic activity for
water remediation, Appl. Catal., B, 228 (2018) 103–112.
- I. Ahmad, S. Shukrullah, M. Ahmad, E. Ahmed, M.Y. Naz,
M.S. Akhtar, N.R. Khalid, A. Hussain, I. Hussain, Effect of Al
doping on the photocatalytic activity of ZnO nanoparticles
decorated on CNTs and graphene: solvothermal synthesis
and study of experimental parameters, Mater. Sci. Semicond.
Process., 123 (2021) 105584, doi:10.1016/J.MSSP.2020.105584.
- B.G. Rao, D. Mukherjee, B.M. Reddy, Chapter 1 – Novel
approaches for preparation of nanoparticles, D. Ficai,
A.M. Grumezescu, Ed., Nanostructures for Novel Therapy:
Synthesis, Characterization and Applications Micro and Nano
Technologies, Elsevier, Amsterdam, Netherlands, 2017, pp. 1–36.
- W.-K. Jo, N.Clament Sagaya Selvam, Enhanced visible lightdriven
photocatalytic performance of ZnO-g-C3N4 coupled with
graphene oxide as a novel ternary nanocomposite, J. Hazard.
Mater., 299 (2015) 462–470.
- J. Yan, Z. Song, X. Wang, Y. Xu, W. Pu, H. Xu, S. Yuan, H. Li,
Enhanced photocatalytic activity of ternary
Ag3PO4/GO/g-C3N4
photocatalysts for Rhodamine B degradation under visible light
radiation, Appl. Surf. Sci., 466 (2019) 70–77.
- M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Microwaveassisted
chemistry: synthetic applications for rapid assembly
of nanomaterials and organics, Acc. Chem. Res., 47 (2014)
1338–1348.
- K.-Y. Shih, Y.-L. Kuan, E.-R. Wang, One-step microwave-assisted
synthesis and visible-light photocatalytic activity enhancement
of BiOBr/RGO nanocomposites for degradation of Methylene
blue, Materials (Basel), 14 (2021) 4577, doi: 10.3390/MA14164577.
- F. Khurshid, M. Jeyavelan, S. Nagarajan, Photocatalytic
dye degradation by graphene oxide doped transition metal
catalysts, Synth. Met., 278 (2021) 116832, doi: 10.1016/J.
SYNTHMET.2021.116832.
- S. Kumar, A. Kumar, Chemically derived luminescent graphene
oxide nanosheets and its sunlight driven photocatalytic activity
against Methylene blue dye, Opt. Mater. (Amst), 62 (2016)
320–327.
- K. Govindan, A.K. Suresh, T. Sakthivel, K. Murugesan,
R. Mohan, V. Gunasekaran, A. Jang, Effect of peroxomonosulfate,
peroxodisulfate and hydrogen peroxide on graphene
oxide photocatalytic performances in Methyl orange dye
degradation, Chemosphere, 237 (2019) 124479,
doi: 10.1016/J.
CHEMOSPHERE.2019.124479.
- M. Maruthupandy, P. Qin, T. Muneeswaran, G. Rajivgandhi,
F. Quero, J.M. Song, Graphene-zinc oxide nanocomposites
(G-ZnO NCs): synthesis, characterization and their
photocatalytic degradation of dye molecules, Mater. Sci. Eng. B,
254 (2020) 114516, doi: 10.1016/J.MSEB.2020.114516.
- S. Das, P. Somu, S. Paul, Visible light induced efficient
photocatalytic degradation of azo dye into nontoxic byproducts
by CdSe quantum dot conjugated nano graphene oxide, J. Mol.
Liq., 340 (2021) 117055, doi:10.1016/J.MOLLIQ.2021.117055.
- M. Beaula Ruby Kamalam, S.S.R. Inbanathan, K. Sethuraman,
A. Umar, H. Algadi, A.A. Ibrahim, Q.I. Rahman, C.S. Garoufalis,
S. Baskoutas, Direct sunlight-driven enhanced photocatalytic
performance of V2O5 nanorods/graphene oxide nanocomposites
for the degradation of Victoria blue dye, Environ. Res.,
199 (2021) 111369, doi: 10.1016/j.envres.2021.111369.
- Z. Fu, B. Qin, X. Guo, Y. Wang, Y. Xu, Q. Qiao, Q. Wang,
F. Wang, S. Gao, Z. Yang, Enhancement of photocatalytic dye
degradation and photoconversion capacity of graphene oxide/SnO2 nanocomposites, J. Alloys Compd., 898 (2022) 162796,
doi: 10.1016/j.jallcom.2003.10.002.
- D. Sivaraj, K. Vijayalakshmi, M. Srinivasan, P. Ramasamy,
Graphene oxide reinforced bismuth titanate for photocatalytic
degradation of azo dye (DB15) prepared by hydrothermal
method, Ceram. Int., 47 (2021) 25074–25080.
- Z. Huang, Z. Lai, D. Zhu, H. Wang, C. Zhao, G. Ruan, F. Du,
Electrospun graphene
oxide/MIL-101(Fe)/poly(acrylonitrile-comaleic
acid) nanofiber: a high-efficient and reusable integrated
photocatalytic adsorbents for removal of dye pollutant from
water samples, J. Colloid Interface Sci., 597 (2021) 196–205.
- F. Anjum, A.M. Asiri, M.A. Khan, M.I. Khan, S.B. Khan, K. Akhtar,
E.M. Bakhsh, K.A. Alamry, S.Y. Alfifi,
S. Chakraborty, Photodegradation,
thermodynamic and kinetic study of carcinogenic
dyes via zinc oxide/graphene oxide nanocomposites, J. Mater.
Res. Technol., 15 (2021) 3171–3191.
- V. Kumaran, P. Sudhagar, A.K. Konga, G. Ponniah, Photocatalytic
Degradation of synthetic organic reactive dye wastewater using
GO-TiO2 nanocomposite, Polish J. Environ. Stud., 29 (2020)
1683–1690.
- T. Liu, Z. Wang, X. Wang, G. Yang, Y. Liu, Adsorptionphotocatalysis
performance of polyaniline/dicarboxyl acid
cellulose@graphene oxide for dye removal, Int. J. Biol.
Macromol., 182 (2021) 492–501.
- S.S. Park, S.-W. Chu, C. Xue, D. Zhao, C.-S. Ha, Facile synthesis
of mesoporous carbon nitrides using the incipient wetness
method and the application as hydrogen adsorbent, J. Mater.
Chem., 21 (2011) 10801, doi:10.1039/c1jm10849b.
- G. Wu, Y. Hu, Y. Liu, J. Zhao, X. Chen, V. Whoehling, C. Plesse,
G.T.M. Nguyen, F. Vidal, W. Chen, Graphitic carbon nitride
nanosheet electrode-based high-performance ionic actuator,
Nat. Commun., 6 (2015), doi:10.1038/ncomms8258.
- J. Fang, H. Fan, M. Li, C. Long, Nitrogen self-doped graphitic
carbon nitride as efficient visible light photocatalyst for
hydrogen evolution, J. Mater. Chem. A, 3 (2015) 13819–13826.
- Y.-Q. Dong, M. Wang, L. Chen, M.-J. Li, Preparation,
characterization of P(VDF-HFP)/[bmim]BF4 ionic liquids hybrid
membranes and their pervaporation performance for ethyl
acetate recovery from water, Desalination, 295 (2012) 53–60.
- Y.S. Jun, E.Z. Lee, X. Wang, W.H. Hong, G.D. Stucky, A. Thomas,
From melamine-cyanuric acid supramolecular aggregates to
carbon nitride hollow spheres, Adv. Funct. Mater., 23 (2013)
3661–3667.
- P. Niu, L. Zhang, G. Liu, H. Cheng, Graphene-like carbon
nitride nanosheets for improved photocatalytic activities,
Adv. Funct. Mater., 22 (2012) 4763–4770.
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, X. Wang,
P.M. Ajayan, Exfoliated graphitic carbon nitride nanosheets as
efficient catalysts for hydrogen evolution under visible light,
J. Adv. Mater., 25 (2013) 2452–2456.
- T. Xu, F. Wu, Y. Gu, Y. Chen, J. Cai, W. Lu, H. Hu, Z. Zhu,
W. Chen, Visible-light responsive electrospun nanofibers
based on polyacrylonitrile-dispersed graphitic carbon nitride,
RSC Adv., 5 (2015) 86505–86512.
- Y. Guo, R. Wang, P. Wang, Y. Li, C. Wang, Developing
polyetherimide/graphitic carbon nitride floating photocatalyst
with good photodegradation performance of Methyl orange
under light irradiation, Chemosphere, 179 (2017) 84–91.
- M. Ben Abdelaziz, B. Chouchene, L. Balan, T. Gries, G. Medjahdi,
H. Ezzaouia, R. Schneider, One pot synthesis of bismuth oxide/graphitic carbon nitride composites with high photocatalytic
activity, Mol. Catal., 463 (2019) 110–118.
- Z. Wang, J. Lv, J. Zhang, K. Dai, C. Liang, Facile synthesis of
Z-scheme BiVO4/porous graphite carbon nitride heterojunction
for enhanced visible-light-driven photocatalyst, Appl. Surf. Sci.,
430 (2018) 595–602.
- M.J. Lima, M.J. Sampaio, C.G. Silva, A.M.T. Silva, J.L. Faria,
Magnetically recoverable Fe3O4/g-C3N4 composite for
photocatalytic production of benzaldehyde under UV-LED
radiation, Catal. Today, 328 (2019) 293–299.
- M. Mousavi, A. Habibi-yangjeh, Novel magnetically separable
g-C3N4/Fe3O4/Ag3PO4/Co3O4 nanocomposites: visible light-driven photocatalysts with highly enhanced activity,
Adv. Powder Technol., 28 (2017) 1540–1553.
- Y. Zhong, Y. Lin, Q. Chen, Y. Sun, F.F. Fu, Rapid photodegradation
of various organic dyes with thin-layer borondoped
graphitic carbon nitride nano-sheets under visible
light irradiation, J. Environ. Chem. Eng., 8 (2020) 103567,
doi: 10.1016/j.jece.2019.103567.
- T.K.A. Nguyen, T.T. Pham, H. Nguyen-Phu, E.W. Shin,
The effect of graphitic carbon nitride precursors on the
photocatalytic dye degradation of water-dispersible graphitic
carbon nitride photocatalysts, Appl. Surf. Sci., 537 (2021)
148027, doi: 10.1016/j.apsusc.2020.148027.
- N. Masunga, B.B. Mamba, K.K. Kefeni, Trace samarium doped
graphitic carbon nitride photocatalytic activity toward Metanil
yellow dye degradation under visible light irradiation, Colloids
Surf., A, 602 (2020) 125107, doi: 10.1016/j.colsurfa.2020.125107.
- S.K. Kuila, R. Sarkar, P. Kumbhakar, P. Kumbhakar, C.S.
Tiwary, T.K. Kundu, Photocatalytic dye degradation
under sunlight irradiation using cerium ion adsorbed twodimensional
graphitic carbon nitride, J. Environ. Chem. Eng.,
8 (2020) 103942, doi: 10.1016/j.jece.2020.103942.
- F.T. Bekena, D.H. Kuo, W.L. Kebede, Universal and highly
efficient degradation performance of novel
Bi2(O,S)3/Mo(O,S)2
nanocomposite photocatalyst under visible light, Sep. Purif.
Technol., 247 (2020) 117042, doi: 10.1016/j.seppur.2020.117042.
- Y. Zeng, N. Guo, Y. Song, Y. Zhao, H. Li, X. Xu, J. Qiu,
H. Yu, Fabrication of Z-scheme magnetic MoS2/CoFe2O4
nanocomposites with highly efficient photocatalytic activity,
J. Colloid Interface Sci., 514 (2018) 664–674.
- N. Guo, H. Li, X. Xu, H. Yu, Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: enhanced and stable
photocatalytic performance for water purification under
visible light irradiation, Appl. Surf. Sci., 389 (2016) 227–239.
- Y. Sun, J. Tan, H. Lin, X. Wang, J. Liu, Y. Li, C. Wang, A
facile strategy for the synthesis of ferroferric oxide/titanium
dioxide/molybdenum disulfide heterostructures as a
magnetically separable photocatalyst under visible-light, J.
Colloid Interface Sci., 516 (2018) 138–144.
- P. Nandigana, M. Sanchayan, D. Manjubashini, P. Basudev,
B. Subramanian, S.K. Panda, Lyophilized tin-doped MoS2
as an efficient photocatalyst for overall degradation of
Rhodamine B dye, J. Alloys Compd., 907 (2022) 164470, doi:
10.1016/j.jallcom.2005.05.002.
- D. Gawari, V. Pandit, N. Jawale, P. Kamble, Layered MoS2 for
photocatalytic dye degradation, Mater. Today Proc., 53 (2022)
10–14.
- P. Sharma, M.K. Singh, M.S. Mehata, Sunlight-driven MoS2
nanosheets mediated degradation of dye
(Crystal violet) for
wastewater treatment, J. Mol. Struct., 1249 (2022) 131651,
doi:10.1016/j.molstruc.2021.131651.
- X. Zhang, K. Fu, Z. Su, Fabrication of 3D MoS2-TiO2@PAN electro-spun membrane for efficient and recyclable
photocatalytic degradation of organic dyes, Mater. Sci. Eng.,
B, 269 (2021) 115179, doi:10.1016/j.mseb.2021.115179.
- S. Chen, Y. Di, H. Li, M. Wang, B. Jia, R. Xu, X. Liu, Efficient
photocatalytic dye degradation by flower-like
MoS2/SrFe12O19
heterojunction under visible light, Appl. Surf. Sci., 559 (2021)
149855, doi:10.1016/j.apsusc.2021.149855.