References

  1. S. Kim, T.W. Pechar, E. Marand, Poly(imide siloxane) and carbon nanotube mixed matrix membranes for gas separation, Desalination, 192 (2006) 330–339.
  2. K. Gethard, O. Sae-Khow, S. Mitra, Water desalination using carbon-nanotube-enhanced membrane distillation, ACS Appl. Mater. Interfaces, 3 (2011) 110–114.
  3. B. Tylkowski, B. Trusheva, V. Bankova, M. Giamberini, G. Peev, A. Nikolova, Extraction of biologically active compounds from propolis and concentration of extract by nanofiltration, J. Membr. Sci., 348 (2010) 124–130.
  4. Q. Fan, K.K. Sirkar, B. Michniak, Iontophoretic transdermal drug delivery system using a conducting polymeric membrane, J. Membr. Sci., 321 (2008) 240–249.
  5. I.H. Tsibranska, B. Tylkowski, Concentration of ethanolic extracts from Sideritis ssp. L. by nanofiltration: comparison of dead-end and cross-flow modes, Food Bioprod. Process., 91 (2013) 169–174.
  6. J. Schaep, C. Vandecasteele, Evaluating the charge of nanofiltration membranes, J. Membr. Sci., 188 (2001) 129–136.
  7. G. Pearce, Introduction to membranes: membrane selection, Filtr. Sep., 44 (2007) 35–37.
  8. Y.L. Lin, Effects of organic, biological and colloidal fouling on the removal of pharmaceuticals and personal care products by nanofiltration and reverse osmosis membranes, J. Membr. Sci., 542 (2017) 342–351.
  9. W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes – use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91–105.
  10. W.R. Bowen, J.A.G. Stoton, T.A. Doneva, Atomic force microscopy study of ultrafiltration membranes: solute interactions and fouling in pulp and paper processing, Surf. Interface Anal., 33 (2002) 7–13.
  11. C.Y. Tang, Y.-N. Kwon, J.O. Leckie, Probing the nano- and micro-scales of reverse osmosis membranes—a comprehensive characterization of physiochemical properties of uncoated and coated membranes by XPS, TEM, ATR-FTIR, and streaming potential measurements, J. Membr. Sci., 287 (2007) 146–156.
  12. J.V. Nicolini, C.P. Borges, H.C. Ferraz, Selective rejection of ions and correlation with surface properties of nanofiltration membranes, Sep. Purif. Technol., 171 (2016) 238–247.
  13. J. Lin, C.Y. Tang, C. Huang, Y.P. Tang, W. Ye, J. Li, J. Shen, R. Van Den Broeck, J. Van Impe, A. Volodin, C. Van Haesendonck, A. Sotto, P. Luis, B. Van der Bruggen, A comprehensive physico-chemical characterization of superhydrophilic loose nanofiltration membranes, J. Membr. Sci., 501 (2016) 1–14.
  14. Y. Baek, J. Kang, P. Theato, J. Yoon, Measuring hydrophilicity of RO membranes by contact angles via sessile drop and captive bubble method: a comparative study, Desalination, 303 (2012) 23–28.
  15. G.Z. Ramon, E.M.V. Hoek, Transport through composite membranes, part 2: impacts of roughness on permeability and fouling, J. Membr. Sci., 425–426 (2013) 141–148.
  16. Q. Li, X. Pan, Z. Qu, X. Zhao, Y. Jin, H. Dai, B. Yang, X. Wang, Understanding the dependence of contact angles of commercially RO membranes on external conditions and surface features, Desalination, 309 (2013) 38–45.
  17. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  18. DOW, FILMTECTM Membranes. Product Information Catalog, 2020. Available at: https://www.lennte ch.com/Data-sheets/ Filmtec-Reverse-Osmosis-Product-Catalog-L.pdf
  19. K. Boussu, Y. Zhang, J. Cocquyt, P. Van der Meeren, A. Volodin, C. Van Haesendonck, J.A. Martens, B. Van der Bruggen, Characterization of polymeric nanofiltration membranes for systematic analysis of membrane performance, J. Membr. Sci., 278 (2006) 418–427.
  20. B.D. Coday, T. Luxbacher, A.E. Childress, N. Almaraz, P. Xu, T.Y. Cath, Indirect determination of zeta potential at high ionic strength: specific application to semipermeable polymeric membranes, J. Membr. Sci., 478 (2015) 58–64.
  21. P. Somovilla, J.P.G. Villaluenga, V.M. Barragán, Experimental determination of the streaming potential across cationexchange membranes with different morphologies, J. Membr. Sci., 500 (2016) 16–24.
  22. H. Barkai, E. Soumya, M. Sadiki, B. Mounyr, K.S. Ibnsouda, Impact of enzymatic treatment on wood surface free energy: contact angle analysis, J. Adhes. Sci. Technol., 4243 (2016) 1–9.
  23. T. Young, An essay on the cohesion of fluids, Philos. Trans. R. Soc. London, (1805) 65–87, doi: 10.1098/rstl.1805.0005.
  24. C.J. Van Oss, M.K. Chaudhury, R.J. Good, Interfacial Lifshitzvan der Waals and polar interactions in macroscopic systems, Chem. Rev., 88 (1988) 927–941.
  25. D.Y. Kwok, D. Li, A.W. Neumann, Evaluation of the Lifshitzvan der Waals/acid–base approach to determine interfacial tensions, Langmuir, 10 (1994) 1323–1328.
  26. C.J. Van Oss, Development and applications of the interfacial tension between water and organic or biological surfaces, Colloids Surf., 54 (2007) 2–9.
  27. G. Hurwitz, G.R. Guillen, E.M.V. Hoek, Probing polyamide membrane surface charge, zeta potential, wettability, and hydrophilicity with contact angle measurements, J. Membr. Sci., 349 (2010) 349–357.
  28. J.A. Brant, A.E. Childress, Assessing short-range membrane– colloid interactions using surface energetics, J. Membr. Sci., 203 (2002) 257–273.
  29. C.J. Van Oss, The Properties of Water and Their Role in Colloidal and Biological Systems, Elsevier, 2008.
  30. Y.A. Boussouga, A. Lhassani, Modeling of fluoride retention in nanofiltration and reverse osmosis membranes for single and binary salts mixtures, Desal. Water Treat, 95 (2017) 162–169.
  31. C.Y. Tang, Y. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes II. Membrane physiochemical properties and their dependence on polyamide and coating layers, Desalination, 242 (2009) 168–182.
  32. H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui, B. Sellamuthu, Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling, Desalination, 277 (2011) 106–112.
  33. S. Yüksel, N. Kabay, M. Yüksel, Removal of bisphenol A (BPA) from water by various nanofiltration (NF) and reverse osmosis (RO) membranes, J. Hazard. Mater., 263 (2013) 307–310.
  34. M. Pontié, H. Dach, J. Leparc, M. Hafsi, A. Lhassani, Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification, Desalination, 221 (2008) 174–191.
  35. B. Teychene, G. Collet, H. Gallard, J.P. Croue, A comparative study of boron and arsenic(III) rejection from brackish water by reverse osmosis membranes, Desalination, 310 (2013) 109–114.
  36. A. Altaee, A. Sharif, A conceptual NF/RO arrangement design in the pressure vessel for seawater desalination, Desal. Water Treat., 3994 (2014) 1–13.
  37. A.E. Childress, M. Elimelech, Relating nanofiltration membrane performance to membrane charge (electrokinetic) characteristics, 34 (2000) 3710–3716.
  38. S. Bandini, C. Mazzoni, Modelling the amphoteric behaviour of polyamide nanofiltration membranes, Desalination, 184 (2005) 327–336.
  39. N. Saffaj, M. Persin, S. Alami Younssi, A. Albizane, M. Bouhria, H. Loukili, H. Dach A. Larbot, Removal of salts and dyes by low ZnAl2O4-TiO2 ultrafiltration membrane deposited on support made from raw clay, Sep. Purif. Technol., 47 (2005) 36–42.
  40. J.A. Brant, K.M. Johnson, A.E. Childress, Characterizing NF and RO membrane surface heterogeneity using chemical force microscopy, Colloids Surf., A, 280 (2006) 45–57.
  41. N. Hilal, V. Kochkodan, H. Al Abdulgader, D. Johnson, A combined ion exchange-nanofiltration process for water desalination: II. Membrane selection, Desalination, 363 (2015) 51–57.
  42. M. Bauman, A. Košak, A. Lobnik, I. Petrinić, T. Luxbacher, Nanofiltration membranes modified with alkoxysilanes: surface characterization using zeta-potential, Colloids Surf., A, 422 (2013) 110–117.
  43. J. Tanninen, M. Mänttäri, M. Nyström, Effect of salt mixture concentration on fractionation with NF membranes, J. Membr. Sci., 283 (2006) 57–64.
  44. M. Mänttäri, A. Pihlajamäki, M. Nyström, Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH, J. Membr. Sci., 280 (2006) 311–320.
  45. H. Dach, Comparison of Nanofiltration and Reverse Osmosis Processes for a Selective Desalination of Brackish Water Feeds, Engineering Sciences, Université d’Angers, USMBA of Fez, 2008.
  46. A. Simon, L.D. Nghiem, P. Le-Clech, S.J. Khan, J.E. Drewes, Effects of membrane degradation on the removal of pharmaceutically active compounds (PhACs) by NF/RO filtration processes, J. Membr. Sci., 340 (2009) 16–25.
  47. D. Norberg, S. Hong, J. Taylor, Y. Zhao, Surface characterization and performance evaluation of commercial fouling resistant low-pressure RO membranes, Desalination, 202 (2007) 45–52.
  48. A.M. Comerton, R.C. Andrews, D.M. Bagley, C. Hao, The rejection of endocrine disrupting and pharmaceutically active compounds by NF and RO membranes as a function of compound and water matrix properties, J. Membr. Sci., 313 (2008) 323–335.
  49. A. Subramani, E.M.V. Hoek, Direct observation of initial microbial deposition onto reverse osmosis and nanofiltration membranes, J. Membr. Sci., 319 (2008) 111–125.
  50. C. Wang, G.K. Such, A. Widjaya, H. Lomas, G. Stevens, F. Caruso, S.E. Kentish, Click poly(ethylene glycol) multilayers on RO membranes: fouling reduction and membrane characterization, J. Membr. Sci., 409–410 (2012) 9–15.
  51. C.J. van Oss, R.J. Good, R.J. Busscher, Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids, J. Dispersion Sci. Technol., 11 (1990) 75–81.
  52. C.J. Van Oss, R.F. Giese, The hydrophilicity and hydrophobicity of clay minerals, Clays Clay Miner., 43 (1995) 474–477.