References

  1. S. Ayoob, A.K. Gupta, V.T. Bhat, A conceptual overview on sustainable technologies for the defluoridation of drinking water, J. Crit. Rev. Env. Sci. Technol., 38 (2008) 401–470.
  2. M. Bodzeka, K. Konieczny, Fluorine in the water environment, Desal. Water Treat., 117 (2018) 118–141.
  3. M. Mohapatra, S. Anand, B.K. Mishra, D.E. Giles, P. Singh, Review of fluoride removal from drinking water, J. Environ. Manage., 91 (2009) 67–77.
  4. S. Selvakumar, K. Ramkumar, N. Chandrasekar, N.S. Magesh, S. Kaliraj, Groundwater quality and its suitability for drinking and irrigational use in the Southern Tiruchirappalli district, Tamil Nadu, India, J. Appl. Water Sci., 7 (2017) 411–420.
  5. S. Guiza, H. Hajji, M. Bagane, External mass transport process during the adsorption of fluoride from aqueous solution by activated clay, C.R. Chim., 22 (2019) 161–168.
  6. F. Wu, L. Feng, L. Zhang, Rejection prediction of isopropylantipyrine and antipyrine by nanofiltration membranes based on the Spiegler–Kedem–Katchalsky model, Desalination, 362 (2015) 11–17.
  7. A. Bhatnagar, E. Kumar, M. Sillanpää, Fluoride removal from water by adsorption – a review, J. Chem. Eng., 171 (2011) 811–840.
  8. H.N. Bhattacharya, S. Chakrabarti, Incidence of fluoride in the groundwater of Purulia District, West Bengal: a geoenvironmental appraisal, J. Curr. Sci., 101 (2011) 152–155.
  9. F.Z. Addar, S. El-Ghzizel, M. Tahaikt, M. Belfaquir, M. Taky, A. Elmidaoui, Fluoride removal by nanofiltration: experimentation, modelling and prediction based on the surface response method, Desal. Water Treat., 240 (2021) 75–88.
  10. M. Tahaikt, S. El-Ghzizel, N. Essafi, M. Hafsi, M. Taky, A. Elmidaoui, Technical-economic comparison of nanofiltration and reverse osmosis in the reduction of fluoride ions from groundwater: experimental, modeling and cost estimate, Desal. Water Treat., 216 (2021) 83–95.
  11. Y. Huang, X. Wang, Y. Xu, S. Feng, J.L.H. Wang, Aminofunctionalized porous PDVB with high adsorption and regeneration performance for fluoride removal from water, Green Chem. Eng., (2020), doi: 10.1016/j.gce.2020.11.011 (in Press).
  12. S.V. Jadhav, K.V. Marathe, V.K. Rathod, A pilot scale concurrent removal of fluoride, arsenic, sulfate and nitrate by using nanofiltration: competing ion interaction and modelling approach, J. Water Process Eng., 13 (2016) 153–167.
  13. K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang, T. Xiao, Removal of fluoride from industrial wastewater by using different adsorbents: a review, Sci. Total Environ., 773 (2021) 145535, doi: 10.1016/j.scitotenv.2021.145535.
  14. X. Chen, C. Wan, R. Yu, L. Meng, D. Wang, W. Chen, T. Duan, L. Li, A novel carboxylated polyacrylonitrile nanofibrous membrane with high adsorption capacity for fluoride removal from water, J. Hazard. Mater., 411 (2021) 113–125.
  15. N. Drouiche, N. Ghaffour, S. Aoudj, M. Hecini, T. Ouslimane, Fluoride removal from photovoltaic wastewater by aluminium electrocoagulation and characteristics of products, J. Chem. Eng. Trans., 17 (2009) 1651–1656.
  16. N. Boudjema, N. Abdi, H. Grib, N. Drouiche, H. Lounici, N. Mameri, Simultaneous removal of natural organic matter and turbidity from Oued El Harrach River by electrocoagulation using an experimental design approach, Desal. Water Treat., 57 (2015) 14386–14395.
  17. S. Chakrabortty, M. Roy, P. Pal., Removal of fluoride from contaminated groundwater by cross flow nanofiltration: transport modeling and economic evaluation, Desalination, 313 (2013) 115–124.
  18. M. Tahaikt, F. Elazhar, I. Mohamed, H. Zeggar, M. Taky, A. Elmidaoui, Comparison of the performance of three nanofiltration membranes for the reduction of fluoride ions: application of the Spiegler–Kedem and steric hindrance pore models, Desal. Water Treat., 240 (2021) 14–23.
  19. M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor, F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi, A. Elmidaoui, Comparison of the performances of three commercial membranes in fluoride removal by nanofiltration. Continuous operations, Desalination, 225 (2008) 209–219.
  20. J. Shen, A.I. Schafer, Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis, Sci. Total Environ., 527–528 (2015) 520–529.
  21. A. Fatehizadeh, M.M. Amin, M. Sillanpää, N. Hatami, E. Taheri, N. Baghaei, S. Mahajan, Modeling of fluoride rejection from aqueous solution by nanofiltration process: single and binary solution, Desal. Water Treat., 193 (2020) 224–234.
  22. M. Pontié, H. Buisson, C.K. Diawara, H. Essis-Tome, Studies of halide ions mass transfer in nanofiltration – application to selective defluorination of brackish drinking water, Desalination, 157 (2003) 127–134.
  23. A.B. Nasr, C. Charcosset, R.B. Amar, K. Walha, Defluoridation of water by nanofiltration, J. Fluorine Chem., 150 (2013) 92–97.
  24. A. Mnif, M. Ben Sik Ali, B. Hamrouni, Effect of some physical and chemical parameters on fluoride removal by nanofiltration, Ionics, 16 (2010) 245–253.
  25. H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad, Rejection and modelling of sulphate and potassium salts by nanofiltration membranes: neural network and Spiegler– Kedem model, Desalination, 206 (2007) 42–60.
  26. L.B. Chaudhari, Z.V.P. Murthy, Separation of Cd and Ni from multicomponent aqueous solutions by nanofiltration and characterization of membrane using IT model, J. Hazard. Mater., 180 (2010) 309–315.
  27. H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui, B. Sellamuthu, Salts retention by nanofiltration membranes: physicochemical and hydrodynamic approaches and modeling, Desalination, 277 (2011) 106–112.
  28. M. Jarzyńska, M. Pietruszka, The application of the Kedem–Katchalsky equations to membrane transport of ethyl alcohol and glucose, Desalination, 280 (2011) 14–19.
  29. D. Meng, B. Zheng, G. Lin, M.L. Sushko, Numerical solution of 3D Poisson–Nernst–Planck equations coupled with classical density functional theory for modeling ion and electron transport in a confined environment, Commun. Comput. Phys., 16 (2014) 1298–1322.
  30. T. Chaabane, S. Taha, M.T. Ahmed, R. Maachi, G. Dorange, Coupled model of film theory and the Nernst–Planck equation in nanofiltration, Desalination, 206 (2007) 424–432.
  31. X. Hua, H. Zhao, R. Yang, W. Zhang, W. Zhao, Coupled model of extended Nernst–Planck equation and film theory in nanofiltration for xylo-oligosaccharide syrup, J. Food Eng., 100 (2010) 302–309.
  32. J. Fang, B. Deng, Rejection and modeling of arsenate by nanofiltration: contributions of convection, diffusion and electromigration to arsenic transport, J. Membr. Sci., 453 (2014) 42–51.
  33. M. Hamachi, M. Cabassud, A. Davin, M.M. Peuchot, Dynamic modelling of crossflow microfiltration of bentonite suspension using recurrent neural networks, Chem. Eng. Process., 38 (1999) 203–210.
  34. W.R. Bowen, M.G. Jones, H.N. Yousef, Dynamic ultrafiltration of proteins — a neural network approach, J. Membr. Sci., 146 (1998) 225–235.
  35. W. Richard Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the rate of crossflow membrane ultrafiltration of colloids: a neural network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
  36. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlie, J.M. Lainé, Modelling of ultrafiltration fouling by neural network, Desalination, 118 (1998) 213–227.
  37. N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlie, J.M. Lainé, Neural network for prediction of ultrafiltration transmembane pressure — application to drinking water, J. Membr. Sci., 150 (1998) 111–123.
  38. C. Teodosiu, O. Pastravanu, M. Macoceanu, Neural network model for ultrafiltration and backwashing, J. Water Res., 34 (2000) 4371–4380.
  39. W.R. Bowen, M.G. Jones, J.S. Welfoo, H.N.S. Yousef, Predicting salt rejections at nanofiltration membranes using artificial neural networks, Desalination, 129 (2000) 147–162.
  40. Guidelines for Drinking-Water Quality: Fourth Edition Incorporating the First Addendum, World Health Organization, Geneva, 2017. Licence: CC BY-NC-SA 3.0IGO; Available at: https://creativecommons.org/licenses/by-nc-sa/3.0/igo.
  41. Moroccan Official Bulletin, Joint Orders No. 1275-01, 1276-01 and 1277-01 of 17th October 2002 Defining the Quality Norms of Surface Waters, Waters Destined for Irrigation and of Surface Waters Used for the Production of Drinking Water Respectively, Official Bulletin of the Kingdom of Morocco, Moroccan Official Bulletin: Rabat, Morocco, 2002, pp. 1518–1525.
  42. M.A. Menkouchi Sahli, S. Annouarb, M. Tahaikt, M. Mountadar, A. Soufiane, A. Elmidaoui, Fluoride removal for underground brackish water by adsorption on the natural chitosan and by electrodialysis, Desalination, 212 (2007) 37–45.
  43. M. Pontie, H. Dach, A. Lhassani, C.K. Diawara, Water defluoridation using nanofiltration vs. reverse osmosis: the first world unit, Thiadiaye (Senegal), Desal. Water Treat., 51 (2013) 164–168.
  44. J. Guo, H. Bao, Y. Zhang, X. Shen, J.-K. Kim, J. Ma, L. Shao, Unravelling intercalation-regulated nanoconfinement for durably ultrafast sieving graphene oxide membranes, J. Membr. Sci., 619 (2021) 118791, doi: 10.1016/j.memsci.2020.118791.
  45. K. Boussu, Y. Zhang, J. Cocquyt, P. Van der Meeren, A. Volodin, C. Van Haesendonck, J.A. Martens, B. Van der Bruggen, Characterization of polymeric nanofiltration membranes for systematic evaluation of membrane performance, J. Membr. Sci., 278 (2006) 418–427.
  46. H. Moayedi, B. Aghel, B. Vaferi, L.K. Foong, D.T. Bui, The feasibility of Levenberg–Marquardt algorithm combined with imperialist competitive computational method predicting drag reduction in crude oil pipelines, J. Pet. Sci. Eng., 185 (2020) 106634, doi: 10.1016/j.petrol.2019.106634.
  47. S.A. Taqvi, L.D. Tufa, H. Zabiri, A.S. Maulud, F. Uddin, Fault detection in distillation column using NARX neural network, Neural Comput. Appl., 32 (2020) 3503–3519.
  48. L. Dresner, Some remarks on the integration of the extended Nernst–Planck equations in the hyperfiltration of multicomponent solutions, Desalination, 10 (1972) 27–46.
  49. L. Song, M. Elimelech, Theory of concentration polarization in cross-flow filtration, J. Chem. Soc., Faraday Trans., 19 (1995) 3389–3398.
  50. J.M. Pope, S. Yao, A.G. Fane, Quantitative measurements of the concentration polarization layer thickness in membrane filtration of oil-water emulsions using NMR micro-imaging, J. Membr. Sci., 118 (1996) 247–257.
  51. R. Bian, K. Yamamoto, Y. Watanabe, The effect of shear rate on controlling the concentration polarization and membrane fouling, Desalination, 131 (2000) 225–236.
  52. S. Lee, Y. Shim, S. Kim, J. Sohn, S.K. Yim, J. Cho, Determination of mass transport characteristics for natural organic mater in ultrafiltration and nanofiltration membranes, Water Sci. Technol. Water Supply, 2 (2002) 151–160.
  53. l. Nghiem, A. Schäfer, M. Elimelich, Removal of natural hormones by nanofiltration membranes: measurement, modelling, and mechanisms, J. Environ. Sci. Technol., 38 (2004) 1888–1896.
  54. J. Mallevialle, P.E. Odendaal, M.R. Wiesner, Water Treatment Membrane Processes, McGraw Hill, New York, 1996.
  55. B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of permeate flux during electric field enhanced cross-flow ultrafiltration—a neural network approach, Sep. Purif. Technol., 65 (2009) 260–268.
  56. L. Zhao, W. Xia, H. Zhao, J. Zhao, Study and modeling of the separation characteristics of a novel alkali-stable NF membrane, Desal. Water Treat., 20 (2010) 253–263.
  57. M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network modeling and response surface methodology of desalination by reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
  58. N.B. Shaik, S.R. Pedapati, S.A.A. Taqvi, A.R. Othman, F.A.A. Dzubir, A feed-forward back propagation neural network approach to predict the life condition of crude oil pipeline, Processes, 8 (2020) 661, doi: 10.3390/pr8060661.
  59. L. Xu, X. Gao, Z. Li, C. Gao, Removal of fluoride by nature diatomite from high-fluorine water: an appropriate pretreatment for nanofiltration process, Desalination, 369 (2015) 97–104.
  60. P. Singh, S.S. Shera, J. Banik, R.M. Banik, Optimization of cultural conditions using response surface methodology versus artificial neural network and modeling of L-glutaminase production by Bacillus cereus MTCC 1305, J. Bioresour. Technol., 137 (2013) 261–269.
  61. K.M. Desai, S.A. Survase, P.S. Saudagar, S.S. Lele, R.S. Singhal, Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan, J. Biochem. Eng., 41 (2008) 266–273.
  62. F. Geyikci, E. Kılıc, S. Coruh, S. Elevli, Modelling of lead adsorption from industrial sludge leachate on red mud by using RSM and ANN, J. Chem. Eng., 183 (2012) 53–59.