References
- S. Ayoob, A.K. Gupta, V.T. Bhat, A conceptual overview on
sustainable technologies for the defluoridation of drinking
water, J. Crit. Rev. Env. Sci. Technol., 38 (2008) 401–470.
- M. Bodzeka, K. Konieczny, Fluorine in the water environment,
Desal. Water Treat., 117 (2018) 118–141.
- M. Mohapatra, S. Anand, B.K. Mishra, D.E. Giles, P. Singh,
Review of fluoride removal from drinking water, J. Environ.
Manage., 91 (2009) 67–77.
- S. Selvakumar, K. Ramkumar, N. Chandrasekar, N.S. Magesh,
S. Kaliraj, Groundwater quality and its suitability for drinking
and irrigational use in the Southern Tiruchirappalli district,
Tamil Nadu, India, J. Appl. Water Sci., 7 (2017) 411–420.
- S. Guiza, H. Hajji, M. Bagane, External mass transport process
during the adsorption of fluoride from aqueous solution by
activated clay, C.R. Chim., 22 (2019) 161–168.
- F. Wu, L. Feng, L. Zhang, Rejection prediction of isopropylantipyrine
and antipyrine by nanofiltration membranes
based on the Spiegler–Kedem–Katchalsky model, Desalination,
362 (2015) 11–17.
- A. Bhatnagar, E. Kumar, M. Sillanpää, Fluoride removal from
water by adsorption – a review, J. Chem. Eng., 171 (2011)
811–840.
- H.N. Bhattacharya, S. Chakrabarti, Incidence of fluoride
in the groundwater of Purulia District, West Bengal:
a geoenvironmental appraisal, J. Curr. Sci., 101 (2011) 152–155.
- F.Z. Addar, S. El-Ghzizel, M. Tahaikt, M. Belfaquir,
M. Taky, A. Elmidaoui, Fluoride removal by nanofiltration:
experimentation, modelling and prediction based on the
surface response method, Desal. Water Treat., 240 (2021) 75–88.
- M. Tahaikt, S. El-Ghzizel, N. Essafi, M. Hafsi, M. Taky,
A. Elmidaoui, Technical-economic comparison of nanofiltration
and reverse osmosis in the reduction of fluoride ions from
groundwater: experimental, modeling and cost estimate, Desal.
Water Treat., 216 (2021) 83–95.
- Y. Huang, X. Wang, Y. Xu, S. Feng, J.L.H. Wang, Aminofunctionalized
porous PDVB with high adsorption and
regeneration performance for fluoride removal from water,
Green Chem. Eng., (2020), doi: 10.1016/j.gce.2020.11.011
(in Press).
- S.V. Jadhav, K.V. Marathe, V.K. Rathod, A pilot scale concurrent
removal of fluoride, arsenic, sulfate and nitrate by using
nanofiltration: competing ion interaction and modelling
approach, J. Water Process Eng., 13 (2016) 153–167.
- K. Wan, L. Huang, J. Yan, B. Ma, X. Huang, Z. Luo, H. Zhang,
T. Xiao, Removal of fluoride from industrial wastewater
by using different adsorbents: a review, Sci. Total Environ.,
773 (2021) 145535, doi: 10.1016/j.scitotenv.2021.145535.
- X. Chen, C. Wan, R. Yu, L. Meng, D. Wang, W. Chen, T. Duan,
L. Li, A novel carboxylated polyacrylonitrile nanofibrous
membrane with high adsorption capacity for fluoride removal
from water, J. Hazard. Mater., 411 (2021) 113–125.
- N. Drouiche, N. Ghaffour, S. Aoudj, M. Hecini, T. Ouslimane,
Fluoride removal from photovoltaic wastewater by aluminium
electrocoagulation and characteristics of products, J. Chem.
Eng. Trans., 17 (2009) 1651–1656.
- N. Boudjema, N. Abdi, H. Grib, N. Drouiche, H. Lounici,
N. Mameri, Simultaneous removal of natural organic matter
and turbidity from Oued El Harrach River by electrocoagulation
using an experimental design approach, Desal. Water Treat.,
57 (2015) 14386–14395.
- S. Chakrabortty, M. Roy, P. Pal., Removal of fluoride from
contaminated groundwater by cross flow nanofiltration:
transport modeling and economic evaluation, Desalination,
313 (2013) 115–124.
- M. Tahaikt, F. Elazhar, I. Mohamed, H. Zeggar, M. Taky,
A. Elmidaoui, Comparison of the performance of three
nanofiltration membranes for the reduction of fluoride ions:
application of the Spiegler–Kedem and steric hindrance pore
models, Desal. Water Treat., 240 (2021) 14–23.
- M. Tahaikt, A. Ait Haddou, R. El Habbani, Z. Amor,
F. Elhannouni, M. Taky, M. Kharif, A. Boughriba, M. Hafsi,
A. Elmidaoui, Comparison of the performances of three
commercial membranes in fluoride removal by nanofiltration.
Continuous operations, Desalination, 225 (2008) 209–219.
- J. Shen, A.I. Schafer, Factors affecting fluoride and natural
organic matter (NOM) removal from natural waters in Tanzania
by nanofiltration/reverse osmosis, Sci. Total Environ., 527–528
(2015) 520–529.
- A. Fatehizadeh, M.M. Amin, M. Sillanpää, N. Hatami, E. Taheri,
N. Baghaei, S. Mahajan, Modeling of fluoride rejection from
aqueous solution by nanofiltration process: single and binary
solution, Desal. Water Treat., 193 (2020) 224–234.
- M. Pontié, H. Buisson, C.K. Diawara, H. Essis-Tome, Studies
of halide ions mass transfer in nanofiltration – application
to selective defluorination of brackish drinking water,
Desalination, 157 (2003) 127–134.
- A.B. Nasr, C. Charcosset, R.B. Amar, K. Walha, Defluoridation
of water by nanofiltration, J. Fluorine Chem., 150 (2013)
92–97.
- A. Mnif, M. Ben Sik Ali, B. Hamrouni, Effect of some physical
and chemical parameters on fluoride removal by nanofiltration,
Ionics, 16 (2010) 245–253.
- H. Al-Zoubi, N. Hilal, N.A. Darwish, A.W. Mohammad,
Rejection and modelling of sulphate and potassium salts by
nanofiltration membranes: neural network and Spiegler–
Kedem model, Desalination, 206 (2007) 42–60.
- L.B. Chaudhari, Z.V.P. Murthy, Separation of Cd and Ni from
multicomponent aqueous solutions by nanofiltration and
characterization of membrane using IT model, J. Hazard.
Mater., 180 (2010) 309–315.
- H. Kelewou, A. Lhassani, M. Merzouki, P. Drogui, B. Sellamuthu,
Salts retention by nanofiltration membranes: physicochemical
and hydrodynamic approaches and modeling, Desalination,
277 (2011) 106–112.
- M. Jarzyńska, M. Pietruszka, The application of the Kedem–Katchalsky equations to membrane transport of ethyl alcohol
and glucose, Desalination, 280 (2011) 14–19.
- D. Meng, B. Zheng, G. Lin, M.L. Sushko, Numerical solution
of 3D Poisson–Nernst–Planck equations coupled with classical
density functional theory for modeling ion and electron
transport in a confined environment, Commun. Comput. Phys.,
16 (2014) 1298–1322.
- T. Chaabane, S. Taha, M.T. Ahmed, R. Maachi, G. Dorange,
Coupled model of film theory and the Nernst–Planck equation
in nanofiltration, Desalination, 206 (2007) 424–432.
- X. Hua, H. Zhao, R. Yang, W. Zhang, W. Zhao, Coupled
model of extended Nernst–Planck equation and film theory
in nanofiltration for xylo-oligosaccharide syrup, J. Food Eng.,
100 (2010) 302–309.
- J. Fang, B. Deng, Rejection and modeling of arsenate by
nanofiltration: contributions of convection, diffusion and
electromigration to arsenic transport, J. Membr. Sci., 453 (2014)
42–51.
- M. Hamachi, M. Cabassud, A. Davin, M.M. Peuchot, Dynamic
modelling of crossflow microfiltration of bentonite suspension
using recurrent neural networks, Chem. Eng. Process., 38 (1999)
203–210.
- W.R. Bowen, M.G. Jones, H.N. Yousef, Dynamic ultrafiltration
of proteins — a neural network approach, J. Membr. Sci.,
146 (1998) 225–235.
- W. Richard Bowen, M.G. Jones, H.N.S. Yousef, Prediction of the
rate of crossflow membrane ultrafiltration of colloids: a neural
network approach, Chem. Eng. Sci., 53 (1998) 3793–3802.
- N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlie,
J.M. Lainé, Modelling of ultrafiltration fouling by neural
network, Desalination, 118 (1998) 213–227.
- N. Delgrange, C. Cabassud, M. Cabassud, L. Durand-Bourlie,
J.M. Lainé, Neural network for prediction of ultrafiltration
transmembane pressure — application to drinking water,
J. Membr. Sci., 150 (1998) 111–123.
- C. Teodosiu, O. Pastravanu, M. Macoceanu, Neural network
model for ultrafiltration and backwashing, J. Water Res.,
34 (2000) 4371–4380.
- W.R. Bowen, M.G. Jones, J.S. Welfoo, H.N.S. Yousef, Predicting
salt rejections at nanofiltration membranes using artificial
neural networks, Desalination, 129 (2000) 147–162.
- Guidelines for Drinking-Water Quality: Fourth Edition
Incorporating the First Addendum, World Health Organization,
Geneva, 2017. Licence: CC BY-NC-SA 3.0IGO; Available at:
https://creativecommons.org/licenses/by-nc-sa/3.0/igo.
- Moroccan Official Bulletin, Joint Orders No. 1275-01, 1276-01
and 1277-01 of 17th October 2002 Defining the Quality
Norms of Surface Waters, Waters Destined for Irrigation
and of Surface Waters Used for the Production of Drinking
Water Respectively, Official Bulletin of the Kingdom of
Morocco, Moroccan Official Bulletin: Rabat, Morocco, 2002,
pp. 1518–1525.
- M.A. Menkouchi Sahli, S. Annouarb, M. Tahaikt, M. Mountadar,
A. Soufiane, A. Elmidaoui, Fluoride removal for underground
brackish water by adsorption on the natural chitosan and
by electrodialysis, Desalination, 212 (2007) 37–45.
- M. Pontie, H. Dach, A. Lhassani, C.K. Diawara, Water
defluoridation using nanofiltration vs. reverse osmosis: the first
world unit, Thiadiaye (Senegal), Desal. Water Treat., 51 (2013)
164–168.
- J. Guo, H. Bao, Y. Zhang, X. Shen, J.-K. Kim, J. Ma, L. Shao,
Unravelling intercalation-regulated nanoconfinement for
durably ultrafast sieving graphene oxide membranes, J. Membr.
Sci., 619 (2021) 118791, doi: 10.1016/j.memsci.2020.118791.
- K. Boussu, Y. Zhang, J. Cocquyt, P. Van der Meeren, A. Volodin,
C. Van Haesendonck, J.A. Martens, B. Van der Bruggen,
Characterization of polymeric nanofiltration membranes for
systematic evaluation of membrane performance, J. Membr.
Sci., 278 (2006) 418–427.
- H. Moayedi, B. Aghel, B. Vaferi, L.K. Foong, D.T. Bui, The
feasibility of Levenberg–Marquardt algorithm combined with
imperialist competitive computational method predicting drag
reduction in crude oil pipelines, J. Pet. Sci. Eng., 185 (2020)
106634, doi: 10.1016/j.petrol.2019.106634.
- S.A. Taqvi, L.D. Tufa, H. Zabiri, A.S. Maulud, F. Uddin, Fault
detection in distillation column using NARX neural network,
Neural Comput. Appl., 32 (2020) 3503–3519.
- L. Dresner, Some remarks on the integration of the
extended Nernst–Planck equations in the hyperfiltration of
multicomponent solutions, Desalination, 10 (1972) 27–46.
- L. Song, M. Elimelech, Theory of concentration polarization in
cross-flow filtration, J. Chem. Soc., Faraday Trans., 19 (1995)
3389–3398.
- J.M. Pope, S. Yao, A.G. Fane, Quantitative measurements of
the concentration polarization layer thickness in membrane
filtration of oil-water emulsions using NMR micro-imaging,
J. Membr. Sci., 118 (1996) 247–257.
- R. Bian, K. Yamamoto, Y. Watanabe, The effect of shear rate
on controlling the concentration polarization and membrane
fouling, Desalination, 131 (2000) 225–236.
- S. Lee, Y. Shim, S. Kim, J. Sohn, S.K. Yim, J. Cho, Determination
of mass transport characteristics for natural organic mater
in ultrafiltration and nanofiltration membranes, Water Sci.
Technol. Water Supply, 2 (2002) 151–160.
- l. Nghiem, A. Schäfer, M. Elimelich, Removal of natural
hormones by nanofiltration membranes: measurement,
modelling, and mechanisms, J. Environ. Sci. Technol., 38 (2004)
1888–1896.
- J. Mallevialle, P.E. Odendaal, M.R. Wiesner, Water Treatment
Membrane Processes, McGraw Hill, New York, 1996.
- B. Sarkar, A. Sengupta, S. De, S. DasGupta, Prediction of
permeate flux during electric field enhanced cross-flow
ultrafiltration—a neural network approach, Sep. Purif. Technol.,
65 (2009) 260–268.
- L. Zhao, W. Xia, H. Zhao, J. Zhao, Study and modeling of the
separation characteristics of a novel alkali-stable NF membrane,
Desal. Water Treat., 20 (2010) 253–263.
- M. Khayet, C. Cojocaru, M. Essalhi, Artificial neural network
modeling and response surface methodology of desalination by
reverse osmosis, J. Membr. Sci., 368 (2011) 202–214.
- N.B. Shaik, S.R. Pedapati, S.A.A. Taqvi, A.R. Othman,
F.A.A. Dzubir, A feed-forward back propagation neural
network approach to predict the life condition of crude oil
pipeline, Processes, 8 (2020) 661, doi: 10.3390/pr8060661.
- L. Xu, X. Gao, Z. Li, C. Gao, Removal of fluoride by nature diatomite
from high-fluorine water: an appropriate pretreatment
for nanofiltration process, Desalination, 369 (2015) 97–104.
- P. Singh, S.S. Shera, J. Banik, R.M. Banik, Optimization of
cultural conditions using response surface methodology versus
artificial neural network and modeling of L-glutaminase
production by Bacillus cereus MTCC 1305, J. Bioresour. Technol.,
137 (2013) 261–269.
- K.M. Desai, S.A. Survase, P.S. Saudagar, S.S. Lele, R.S. Singhal,
Comparison of artificial neural network (ANN) and response
surface methodology (RSM) in fermentation media
optimization: case study of fermentative production of
scleroglucan, J. Biochem. Eng., 41 (2008) 266–273.
- F. Geyikci, E. Kılıc, S. Coruh, S. Elevli, Modelling of lead
adsorption from industrial sludge leachate on red mud by
using RSM and ANN, J. Chem. Eng., 183 (2012) 53–59.