References

  1. W.F. He, H.X. Yang, T. Wen, D. Han, Thermodynamic and economic investigation of a humidification dehumidification desalination system driven by low grade waste heat, Energy Convers. Manage., 183 (2019) 848–858.
  2. D. Han, W.F. He, C. Ji, L. Huang, Thermodynamic analysis of a novel evaporation and crystallization system based on humidification processes at ambient temperature, Desalination, 439 (2018) 108–118.
  3. Y. Hui, Y.Z. Wang, S.L. Weng, Experimental investigation of pressurized packing saturator for humid air turbine cycle, Appl. Therm. Eng., 62 (2014) 513–519.
  4. W.F. He, L. Huang, J.R. Xia, W.P. Zhu, D. Han, Y.K Wu, Parametric analysis of a humidification dehumidification desalination system using a direct-contact dehumidifier, Int. J. Therm. Sci., 120 (2017) 31–40.
  5. W.F. He, D. Han, T. Wen, H.X. Yang, J.J. Chen, Thermodynamic and economic analysis of a combined plant for power and water production, J. Cleaner Prod., 228 (2019) 521–532.
  6. J.J. Chen, D. Han, W.F. He, Characteristic analysis of heat and mass transfer process within structured packing humidifier, J. Braz. Soc. Mech. Sci. Eng., 361 (2019) 1–15.
  7. Z. Xu, Y.C. Xie, Y.H. Xiao, A compact packing humidifier for the micro humid air turbine cycle: Design method and experimental evaluation, Appl. Therm. Eng., 125 (2017) 727–734.
  8. H. Jaber, R.L. Webb, Design of cooling towers by the effectiveness-NTU method, J. Heat Transfer, 111 (1989) 837–843.
  9. T.F. Ke, X. Huang, X. Ling, Numerical and experimental analysis on air/water direct contact heat and mass transfer in the humidifier, Appl. Therm. Eng., 156 (2019) 310–323.
  10. J.J. Chen, D. Han, W.F. He, Y. Liu, J.M. Gu, Theoretical and experimental analysis of the thermodynamic and economic performance for a packed bed humidifier, Energy Convers. Manage., 206 (2020) 112479, doi:10.1016/j. enconman.2020.112497.
  11. H.A. Ahmed, I.M. Ismail, W.F. Saleh, Experimental investigation of humidification–dehumidification desalination system with corrugated packing in the humidifier, Desalination, 410 (2017) 19–29.
  12. Y. Ghalavand, A. Rahimi, M.S. Hatamipour, Mathematical modeling for humidifier performance
    in a compression desalination system: insulation effects, Desalination, 433 (2018) 48–55.
  13. Z. Xu, Y. Xie, F. Zhang, Development of mass transfer coefficient correlation for a ceramic foam packing humidifier at elevated pressure, Appl. Therm. Eng., 133 (2018) 560–565.
  14. W.F. He, D. Han, W.P. Zhu, C. Ji, Thermo-economic analysis of a water-heated humidification-dehumidification desalination system with waste heat recovery, Energy Convers. Manage., 160 (2018) 182–190.
  15. A. Scott, R. Michael, Perkins, R. Bruce, Computational fluid dynamics simulation of structured packing, Ind. Eng. Chem. Res., 52 (2013) 2032–2045.
  16. L. Raynal, A. Royon-Lebeaud, A multi-scale approach for CFD calculations of gas–liquid flow within large size column equipped with structured packing, Chem. Eng. Sci., 62 (2007) 7196–7204.
  17. C.W. Hirt, B.D. Nichols. Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys., 39 (1981) 201–225.
  18. C.R. Kharangate, I. Mudawar, Review of computational studies on boiling and condensation, Int. J. Heat Mass Transfer, 108 (2017) 1164–1196.
  19. K. Rajesh, E. Janine, X. Sun, Multiphase flow studies for microscale hydrodynamics in the structured packed column, Chem. Eng. J., 353 (2018) 949–963.
  20. P. Chasanis, A. Lautenschleger, E. Kenig, Numerical investigation of carbon dioxide absorption in a falling-film micro-contactor, Chem. Eng. Sci., 65 (2010) 1125–1133.
  21. T. Wen, Y.M. Luo, L. Lu, A novel 3D simulation model for investigating liquid desiccant dehumidification performance based on CFD technology, Appl. Energy, 240 (2019) 486–498.
  22. Y.M. Luo, H.X. Yang, L. Lu, Liquid desiccant dehumidifier: development of a new performance predication model based on CFD, Int. J. Heat Mass Transfer, 69 (2014) 408–416.
  23. F.M. Haghshenas, M. Zivdar, R. Rahimi, E.M. Nasr, A. Afacan, K. Nandakumar, K. Chuang, CFD simulation of mass transfer efficiency and pressure drop in a structured packed distillation column, Chem. Eng. Technol., 30 (2007) 854–861.
  24. Z.Y. Tong, A. Marek, W.R. Hong, J. Repke, Experimental and numerical investigation on gravity-driven film flow over triangular corrugations, Ind. Eng. Chem. Res., 52 (2013) 15946–15958.
  25. Y. Haroun, L. Raynal, D. Legender, Mass transfer and liquid hold-up determination in structured packing by CFD, Chem. Eng. Sci., 75 (2012) 342–348.
  26. Y. Xu, J. Yuan, J. Repke, G. Wozny, CFD study on liquid flow behavior on inclined flat plate focusing on effect of flow rate, Eng. Appl. Comput. Fluid Mech., 6 (2012) 186–194.
  27. F. Gu, C.J. Liu, X.G. Yuan, G.C. Yu, CFD simulation of liquid film flow on inclined plates, Chem. Eng. Technol., 27 (2004) 1099–1104.
  28. A. Ataki, H.-J. Bart, Experimental and CFD simulation study for the wetting of a structured packing element with liquids, Chem. Eng. Technol., 29 (2006) 336–347.
  29. R.B. Bird, W.E. Stewart, Lightfoot E N, Transport Phenomena, Wiley, New York, 1960.
  30. G.B. Liu, Y. Hui, Y.Z. Wang, Numerical simulation of the mass transfer in gas–liquid falling film flow on the vertical plate, Gas Turbine Technol., 25 (2012) 34–39.
  31. L. Zhang, E. Hihara, F. Massuoka, C.B. Dang, Experimental analysis of mass transfer in adiabatic structured packing dehumidifier/regenerator with liquid desiccant, Int. J. Heat Mass Transfer, 53 (2010) 2856–2863.
  32. J. Yu, S.M. Jin, Y.J. Xia, Experimental and CFD investigation of the counter-flow spray concentration tower in solar energy air evaporating separation saline wastewater treatment system, Int. J. Heat Mass Transfer, 144 (2019) 118621, doi: 10.1016/j. ijheatmasstransfer.2019.118621.