References

  1. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review, Desal. Water Treat., 41 (2012) 131–169.
  2. W. Chairungsri, A. Subkomkaew, P. Kijjanapanich, Y. Chimupala, Direct dye wastewater photocatalysis using immobilized titanium dioxide on fixed substrate, Chemosphere, 286 (2022) 131762, doi:10.1016/j.chemosphere.2021.131762.
  3. N. Oke, S. Mohan, Development of nanoporous textile sludge based adsorbent for the dye removal from industrial textile effluent, J. Hazard. Mater., 422 (2022) 126864, doi: 10.1016/j.jhazmat.2021.126864.
  4. T.C. Bessy, M.R. Bindhu, J. Johnson, S.M. Chen, T.W. Chen, K.S. Almaary, UV light assisted photocatalytic degradation of textile wastewater by Mg0.8–xZnxFe2O4 synthesized by combustion method and in-vitro antimicrobial activities, Environ. Res., 204 (2022) 111917, doi: 10.1016/j.envres.2021.111917.
  5. S. Arefi-Oskoui, A. Khataee, S.J. Behrouz, V. Vatanpour, S.H. Gharamaleki, Y. Orooji, M. Safarpour, Development of MoS2/O-MWCNTs/PES blended membrane for efficient removal of dyes, antibiotic, and protein, Sep. Purif. Technol., 280 (2022) 119822, doi: 10.1016/j.seppur.2021.119822.
  6. A. Mohmouda, F. Koolic, Y. Liud, Waste of pine seeds as bioremoval agent for methylene blue from aqueous solution: regeneration and single-stage batch design, Desal. Water Treat., 204 (2020) 144–154.
  7. S.B. Seror, D. Shamir, Y. Albo, H. Kornweitz, A. Burg, Elucidation of a mechanism for the heterogeneous electro-Fenton process and its application in the green treatment of azo dyes, Chemosphere, 286 (2022) 131832, doi: 10.1016/j. chemosphere.2021.131832.
  8. P. Neha, K. Vijyendra, G. Prabir, Degradation of 4-nitrophenol (4-NP) using Fe-loaded fly ash brick clay as a heterogeneous Fenton catalyst, Desal. Water Treat., 95 (2017) 170–179.
  9. Y. Zhu, Q. Xie, R. Zhu, Y. Lv, Y. Xi, J. Zhu, J. Fan, Hydrothermal carbons/ferrihydrite heterogeneous Fenton catalysts with low H2O2 consumption and the effect of graphitization degrees, Chemosphere, 287 (2022) 131933, doi: 10.1016/j. chemosphere.2021.131933.
  10. C. Liu, B. Yang, J. Chen, F. Jia, S. Song, Synergetic degradation of Methylene blue through photocatalysis and Fenton reaction on two-dimensional molybdenite-Fe, J. Environ. Sci., 111 (2022) 11–23.
  11. N. Hajipour, M. Ghorbanpour, A. Feizi, Application of photo-Fenton dye removal with γ-Fe22O3/bentonite nanocomposites prepared by solid-state reaction in wastewater treatment, Desal. Water Treat., 233 (2021) 311–318.
  12. C. Hou, J. Zhao, Y. Zhang, Y. Qian, J. Chen, M. Yang, X. Zhou, Enhanced simultaneous removal of cadmium, lead, and acetochlor in hyporheic zones with calcium peroxide coupled with zero-valent iron: mechanisms and application, Chem. Eng. J., 427 (2022) 130900, doi: 10.1016/j.cej.2021.130900.
  13. Z. Chen, M. Chen, K.Y. Koh, W. Neo, C.N. Ong, J.P. Chen, An optimized CaO2-functionalized alginate bead for simultaneous and efficient removal of phosphorous and harmful cyanobacteria, Sci. Total Environ., 806 (2022) 150382, doi: 10.1016/j.scitotenv.2021.150382.
  14. M. Chen, Z. Chen, P. Wu, J.P. Chen, Simultaneous oxidation and removal of arsenite by Fe(III)/CaO2 Fenton-like technology, Water Res., 201 (2021) 117312, doi: 10.1016/j.watres.2021.117312.
  15. R. Yang, G. Zeng, Z. Xu, Z. Zhou, J. Huang, R. Fu, S. Lyu, Comparison of naphthalene removal performance using H2O2, sodium percarbonate and calcium peroxide oxidants activated by ferrous ions and degradation mechanism, Chemosphere, 283 (2021) 131209, doi: 10.1016/j.chemosphere.2021.131209.
  16. J. Wang, X. Zhang, X. Zhou, M.G. Waigi, F.O. Gudda, C. Zhang, W. Ling, Promoted oxidation of polycyclic aromatic hydrocarbons in soils by dual persulfate/calcium peroxide system, Sci. Total Environ., 758 (2021) 143680, doi: 10.1016/j. scitotenv.2020.143680.
  17. D. He, B. Bao, M. Sun, J. Chen, H. Luo, J. Li, Enhanced dewatering of activated sludge by acid assisted heat–CaO2 treatment: simultaneously removing heavy metals and mitigating antibiotic resistance genes, J. Hazard. Mater., 418 (2021) 126248, doi: 10.1016/j.jhazmat.2021.126248.
  18. X. Qiuxiang, H. Qi-Su, W. We, S. Jin, D. Xiaoh, N. Bing-Ji, Improving the treatment of waste activated sludge using calcium peroxide, Water Res., 187 (2020) 116440, doi: 10.1016/j. watres.2020.116440.
  19. J. Wang, Y. Lou, K. Feng, H. Zhou, B. Liu, G. Xie, D. Xing, Enhancing the decomposition of extracellular polymeric substances and the recovery of short-chain fatty acids from waste activated sludge: analysis of the performance and mechanism of co-treatment by free nitrous acid and calcium peroxide, J. Hazard. Mater., 423 (2022) 127022, doi: 10.1016/j. jhazmat.2021.127022.
  20. J.G. Kim, H.B. Kim, W.G. Jeong, K. Baek, Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite, J. Hazard. Mater., 419 (2021) 126514, doi: 10.1016/j.jhazmat.2021.126514.
  21. G. Zhang, Y. Shi, W. Chen, M. Dou, Z. Zhao, X. Wang, T. Zhang, Methane production from waste activated sludge by combining calcium peroxide pretreatment with zero valent iron bioenhancement: performance and mechanisms, J. Cleaner Prod., 320 (2021) 128773, doi: 10.1016/j.jclepro.2021.128773.
  22. M.A.P. Cechinel, T.O. Guidolin, A.R. Silveira, T.J. Santos, O.R.K. Montedo, S. Arcaro, Coal mining pyritic waste in Fenton-like processes: raw and purified catalysts in Reactive blue 21 dye discoloration, Sci. Total Environ., 807 (2022) 150823, doi: 10.1016/j.scitotenv.2021.150823.
  23. T. Hussain, M. Hussain, S. Hussain, M. Kaseem, Microwaveassisted synthesis of NiTe2 photocatalyst as a facile and scalable approach for energy-efficient photocatalysis and detoxification of harmful organic dyes, Sep. Purif. Technol., 282 (2021) 120025, doi: 10.1016/j.seppur.2021.120025.
  24. S. Zhang, Y. Wei, J. Metz, S. He, P.J. Alvarez, M. Long, Persistent free radicals in biochar enhance
    superoxide-mediated Fe(III)/Fe(II) cycling and the efficacy of CaO2 Fenton-like treatment, J. Hazard. Mater., 421 (2022) 126805, doi: 10.1016/j. jhazmat.2021.126805.
  25. Y. Yin, T. Jiang, Y. Hao, J. Zhang, W. Li, Y. Hao, W. He, Y. Song, Q. Feng, W. Ma, Cascade catalytic nanoplatform based on ions interference strategy for calcium overload therapy and ferroptosis, Int. J. Pharm., 606 (2021) 120937, doi: doi: 10.1016/j. ijpharm.2021.120937.
  26. A.A. Alshehri, M.A. Malik, Biogenic fabrication of ZnO nanoparticles using Trigonella foenum-graecum (Fenugreek) for proficient photocatalytic degradation of methylene blue under UV irradiation, J. Mater. Sci.: Mater. Electron., 30 (2019) 16156–16173.
  27. K. Sajedeh, K. Akbar, B. Shahin, Fabrication of amine-decorated nonspherical microparticles with calcium peroxide cargo for controlled release of oxygen, J. Biomed. Mater. Res. A, 108 (2020) 136–147.
  28. A. Meesam, F. Usman, L. Shuguang, S. Yong, L. Ming, A. Ayyaz, S. Ali, A. Zain, Synthesis of controlled release calcium peroxide nanoparticles (CR-nCPs): characterizations, H2O2 liberate performances and pollutant degradation efficiency, Sep. Purif. Technol., 241 (2020) 116729, doi: 10.1016/j.seppur.2020.116729.
  29. L. Andrews, G.V. Chertihin, C.A. Thompson, J. Dillon, S. Byrne, C.W. Bauschlicher, infrared spectra and quantum chemical calculations of group 2MO2, O2MO2, and related molecules, J. Phys. Chem., 100 (1996) 10088–10099.
  30. E. Pramono, S.B. Utomo, V. Wulandari, F. Clegg, FTIR studies on the effect of concentration of polyethylene glycol on polimerization of Shellac, J. Phys. Conf. Ser., 776 (2016) 012053,
    doi: 10.1088/1742-6596/776/1/012053.
  31. Y. Tian, W. Fu, Q. Wang, Y. Tang, M. Zhou, High electron transfer rate and efficiency on Fe0 modified by sulfidation and pre-magnetization for carbamazepine degradation by heterogeneous electro-Fenton in wide pH ranges, Chem. Eng. J., 427 (2022) 131694, doi: 10.1016/j.cej.2021.131694.
  32. P. Vijuksungsith, T. Satapanajaru, C. Chokejaroenrat, C. Jarusutthirak, C. Sakulthaew, A. Kambhu,
    R. Boonprasert, Remediating oxytetracycline-contaminated aquaculture water using nano calcium peroxide (nCaO2) produced from flue gas desulfurization (FGD) gypsum, Environ. Technol. Innov., 24 (2021) 101861, doi: 10.1016/j.eti.2021.101861.
  33. Y.Y. Jiang, Z.W. Chen, M.M. Li, Q.H. Xiang, X.X. Wang, H.F. Miao, W.Q. Ruan, Degradation of diclofenac sodium using Fentonlike technology based on nano-calcium peroxide, Sci. Total Environ., 773 (2021) 144801, doi:10.1016/j.scitotenv.2020.144801.
  34. L. Xiang, Z. Xie, H. Guo, J. Song, D. Li, Y. Wang, S. Pan, S. Lin, Z. Li, J. Han, W. Qiao, Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: mechanism and toxicity assessment, Chemosphere, 283 (2021) 131156, doi: 10.1016/j.chemosphere.2021.131156.
  35. P. Yue, S. Hanrui, Z. Yitong, V.M. Hamed, L. Mingce, CaO2 based Fenton-like reaction at neutral pH: Accelerated reduction of ferric species and production of superoxide radicals, Water Res., 145 (2018) 731–740.
  36. Z. Ming, D.D. Kevin, P. Minkyu, B.N. Alec, C.C. Erica, L. Yongmei, A.S. Shane, Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO2 process: influencing factors, degradation mechanism and pathways, Water Res., 164 (2019) 114922, doi: 10.1016/j.watres.2019.114922.
  37. S. Hashemian, Fenton-like oxidation of Malachite green solutions: kinetic and thermodynamic study, J. Chem., 2013 (2013) 809318, doi: 10.1155/2013/809318.
  38. E. Kulaksız, B. Kayan, B. Gözmen, D. Kalderis, N. Oturan, M.A. Oturan, Comparative degradation
    of 5-fluorouracil in aqueous solution by using H2O2-modified subcritical water, photocatalytic oxidation and electro-Fenton processes, Environ. Res., 204 (2022) 111898, doi: 10.1016/j.envres.2021.111898.
  39. N.T. Dung, N.T. Hoa, V.D. Thao, N.N. Huy, A comprehensive study on the heterogeneous electro-Fenton degradation of tartrazine in water using CoFe2O4/carbon felt cathode, Chemosphere, 287 (2022) 132141, doi: 10.1016/j.chemosphere.2021.132141.
  40. H. Xu, H. Guo, C. Chai, N. Li, X. Lin, W. Xu, Anodized graphite felt as an efficient cathode for in-situ hydrogen peroxide production and electro-Fenton degradation of Rhodamine B, Chemosphere, 286 (2022b) 131936, doi: 10.1016/j. chemosphere.2021.131936.
  41. S.N.G. Eroi, A.S. Ello, D. Diabaté, D.B. Ossonon, Heterogeneous WO3/H2O2 system for degradation of Indigo Carmin dye from aqueous solution, S. Afr. J. Chem. Eng., 37 (2021) 53–60.
  42. O.M. Cornejo, M. Ortiz, Z.G. Aguilar, J.L. Nava, Degradation of Acid violet 19 textile dye by electro-peroxone in a laboratory flow plant, Chemosphere, 271 (2021) 129804, doi: 10.1016/j.chemosphere.2021.129804.
  43. F. Anjum, A.M. Asiri, M.A. Khan, M.I. Khan, S.B. Khan, K. Akhtar, E.M. Bakhsha, K.A. Alamry, S.Y. Alfifi,
    S. Chakraborty, Photodegradation, thermodynamic and kinetic study of carcinogenic dyes via zinc oxide/graphene oxide nanocomposites, J. Mater. Res. Technol., 15 (2021) 3171–3191.
  44. S. Ali, S. Basak, S. Sikdar, M. Roy, Synergetic effects of green synthesized CeO2 nanorod-like catalyst for degradation of organic pollutants to reduce water pollution, Environ. Nanotechnol. Monit. Manage., 16 (2021) 100539, doi: 10.1016/j.enmm.2021.100539.
  45. M. Saxena, R. Saxena, Fast and efficient single step synthesis of modified magnetic nanocatalyst for catalytic reduction of 4-nitrophenol, Mater. Chem. Phys., 276 (2021) 125437, doi:10.1016/j.matchemphys.2021.125437.
  46. R. Jain, S. Mendiratta, L. Kumar, A. Srivastava, Green synthesis of iron nanoparticles using Artocarpus heterophyllus peel extract and their application as a heterogeneous Fenton-like catalyst for the degradation of Fuchsin Basic dye, Curr. Res. Green Sustainable Chem., 4 (2021) 100086, doi: 10.1016/j. crgsc.2021.100086.
  47. N.S. Freitas, M. Alzamora, D.R. Sanchez, Y.E. Licea, J.D. Senra, N.M. Carvalho, Green palladium nanoparticles prepared with glycerol and supported on maghemite for dye removal application, J. Environ. Chem. Eng., 9 (2021) 104856, doi: 10.1016/j.jece.2020.104856.
  48. D.S. Duc, Response surface optimization for decolorization of Basic blue 41 by Fenton’s reagent, Int. J. Chemtech. Res., 6 (2014) 3943–3948.
  49. D. Solomon, Z. Kiflie, S.V. Hulle, Using Box–Behnken experimental design to optimize the degradation of Basic blue 41 dye by Fenton reaction, Int. J. Ind. Chem., 11 (2020) 43–53.
  50. N.M. Mahmoodi, J. Abdi, Nanoporous metal-organic framework (MOF-199): synthesis, characterization and photocatalytic degradation of Basic blue 41, Microchem. J., 144 (2019) 436–442.
  51. E. Stathatos, D. Papoulis, C.A. Aggelopoulos, D. Panagiotaras, A. Nikolopoulou, TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water, J. Hazard. Mater., 211 (2012) 68–76.
  52. Y. Jiang, Y. Sun, H. Liu, F. Zhu, H. Yin, Solar photocatalytic decolorization of CI Basic blue 41 in an aqueous suspension of TiO2–ZnO, Dyes Pigm., 78 (2008) 77–83.
  53. Y. Benrighi, N. Nasrallah, T. Chaabane, V. Sivasankar, A. Darchen, O. Baaloudj, Characterization of CoCr2O4 semiconductor: a prominent photocatalyst in the degradation of Basic blue 41 from wastewater, Opt. Mater., 122 (2021) 111819, doi: 10.1016/j.optmat.2021.111819.
  54. T.E. Kweinor, E. Obotey Ezugbe, D. Asante-Sackey, E.K. Armah, S. Rathilal, Response surface methodology: photocatalytic degradation kinetics of Basic blue 41 dye using activated carbon with TiO2, Molecules, 26 (2021) 1068, doi: 10.3390/molecules26041068.
  55. S. Mohammadi-Aghdam, M.E. Olya, Degradation of CI Basic blue 41 using modified TiO2 nanocomposite in a rectangular semibatch photoreactor, Prog. Color Color. Coat., 8 (2014) 47–57.
  56. L. Nouri, S. Hemidouche, A. Boudjemaa, F. Kaouah, Z. Sadaoui, K. Bachari, Elaboration and characterization of photobiocomposite beads, based on titanium(IV) oxide and sodium alginate biopolymer, for Basic blue 41 adsorption/photocatalytic degradation, Int. J. Biol. Macromol., 151 (2020) 66–84.
  57. W.R. Kartiko, I. Suciani, E. Savitri, R. Reynaldi, A. Budhyantoro, Photocatalytic decolorization of Basic blue 41 using TiO2-Fe3O4-bentonite coating applied to ceramic in continuous system, Chem. Eng. Commun., 207 (2020) 203–212.
  58. A. Rapsomanikis, D. Papoulis, D. Panagiotaras, E. Kaplani, E. Stathatos, Nanocrystalline TiO2 and halloysite clay mineral composite films prepared by sol-gel method: synergistic effect and the case of silver modification to the photocatalytic degradation of Basic blue-41 azo dye in water, Global Nest J., 16 (2014) 485–498.
  59. A. Sadeghzadeh-Attar, Binary Zn-doped SnO2/Al2O3 nanotube composites for visible-light-driven photocatalytic degradation of Basic blue 41, ACS Appl. Nano Mater., 3 (2020) 9931–9942.
  60. M. Behpour, P. Shirazi, M. Rahbar, Immobilization of the Fe2O3/TiO2 photocatalyst on carbon fiber cloth for the degradation of a textile dye under visible light irradiation, React. Kinet. Mech. Catal., 127 (2019) 1073–1085.
  61. M.A. Shaida, A.K. Sen, R.K. Dutta, Alternate use of sulphur rich coals as solar photo-Fenton agent for degradation of toxic azo dyes, J. Cleaner Prod., 195 (2018) 1003–1014.
  62. N.M. Mahmoodi, S. Keshavarzi, M. Ghezelbash, Synthesis of nanoparticle and modelling of its photocatalytic dye degradation ability from colored wastewater, J. Environ. Chem. Eng., 5 (2017) 3684–3689.
  63. H. Kenfoud, N. Nasrallah, D. Meziani, M. Trari, Photoelectrochemical study of the spinel CaFe2O4 nanostructure: application to Basic blue 41 oxidation under solar light, J. Solid State Electrochem., 25 (2021) 1815–1823.
  64. M. Abbasi, N.R. Asl, Sonochemical degradation of Basic blue 41 dye assisted by nanoTiO2 and H2O2, J. Hazard. Mater., 153 (2008) 942–947.
  65. J. Parsa, M. Abbasi, Modeling and optimizing of sonochemical degradation of Basic blue 41 via response surface methodology, Open Chem., 8 (2010) 1069–1077.
  66. N. Wang, T. Zheng, G. Zhang, P. Wang, A review on Fenton-like processes for organic wastewater treatment,
    J. Environ. Chem. Eng., 4 (2016) 762–787.
  67. A. Babuponnusami, K. Muthukumar. A review on Fenton and improvements to the Fenton process for wastewater treatment, J. Environ. Chem. Eng., 2 (2014) 557–572.
  68. M. Antonopoulou, C. Kosma, T. Albanis, I. Konstantinou, An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale, Sci. Total Environ., 765 (2021) 144163, doi:10.1016/j.scitotenv.2020.144163.
  69. M. Pawar, T.S. Sendoğdular, P. Gouma, A brief overview of TiO2 photocatalyst for organic dye remediation: case study of reaction mechanisms involved in Ce-TiO2 photocatalysts system, J. Nanomater., 2018 (2018) 5953609, doi: 10.1155/2018/5953609.
  70. D. Wang, M.A. Mueses, J.A.C. Márquez, F. Machuca-Martínez, I. Grčić, R.P.M. Moreira, G.L. Puma, Engineering and modeling perspectives on photocatalytic reactors for water treatment, Water Res., 202 (2021) 117421, doi: 10.1016/j.watres.2021.117421.
  71. L. Andronic, A. Vladescu, A. Enesca, Synthesis, characterisation, photocatalytic activity, and aquatic toxicity evaluation of TiO2 nanoparticles, Nanomaterials, 11 (2021) 3197, doi: 10.3390/nano11123197.
  72. J.A Coral, C.L. Kitchens, J.L. Brumaghim, S.J. Klaine, Correlating quantitative measurements of radical production by photocatalytic TiO2 with Daphnia magna toxicity, Environ. Toxicol. Chem., 40 (2021) 1322–1334.
  73. J.K. Seol, M. Park, J.M. Im, H.S. Seo, H.J. Park, S.S. Nah, Acute toxicity assessment for TiO2 photocatalyst (GST) made from wastewater using TiCl4 in rat, Environ. Anal. Health Toxicol., 36 (2021), doi:10.5620/eaht.2021019.
  74. R. Naima, M. Imen, J. Mustapha, H. Abdelmalek, K. Kamel, M. Sakly, A. Amara, Acute titanium dioxide nanoparticles exposure impaired spatial cognitive performance through neurotoxic and oxidative mechanisms in Wistar rats, Biomarkers, 26 (2021) 760–769.
  75. Y. Fang, M. Dai, W. Ye, F. Li, H. Sun, J. Wei, B. Li, Damaging effects of TiO2 nanoparticles on the ovarian cells of Bombyx mori, Biol. Trace Elem. Res., 200 (2022) 1883–1891.
  76. J. Canlan, Y. Ying, Z. Lei, L. Dan, L. Lingli, Y. Xiaoxue, C. Tianming, Degradation of atrazine, simazine and ametryn in an arable soil using thermal-activated persulfate oxidation process: optimization, kinetics, and degradation pathway, J. Hazard. Mater., 400 (2020) 123201, doi: 10.1016/j.jhazmat.2020.123201.