References

  1. A. Mohan, A. Rao, J. Vancso, F. Mugele, Towards enhanced oil recovery: effects of ionic valency and pH on the adsorption of hydrolyzed polyacrylamide at model surfaces using QCM-D, Appl. Surf. Sci., 560 (2021) 149995, doi: 10.1016/j. apsusc.2021.149995.
  2. Y.N. Chen, X.H. Li, Z.Z. Wang, F. Li, J.H. Xie, Z.L. Lin, Z.H. Xu, B.Z. Liu, X. Li, H.L. Zheng, Research on a new cationic polyacrylamide (CPAM) with a cationic microblock structure and its enhanced effect on sludge condition and dewatering, Environ. Sci. Pollut. Res., 28 (2021) 51865–51878.
  3. X.M. Wang, Review of characterization methods for watersoluble polymers used in oil sand and heavy oil industrial applications, Environ. Rev., 24 (2016) 460–470.
  4. E.A. Smith, S.L. Prues, F.W. Oehme, Environmental degradation of polyacrylamides. 1. Effects of artificial environmental conditions: temperature, light, and pH, Ecotoxicol. Environ. Saf., 35 (1996) 121–135.
  5. J. Gao, Chemical degradation of polyacrylamide at low temperature in aqueous solution, Macromol. Symp., 144 (1999) 179–185.
  6. H.Y. Yen, M.H. Yang, The ultrasonic degradation of polyacrylamide solution, Polym. Test., 22 (2003) 129–131.
  7. Q. Wen, Z. Chen, Y. Zhao, H. Zhang, Y. Feng, Biodegradation of polyacrylamide by bacteria isolated from activated sludge and oil-contaminated soil, J. Hazard. Mater., 175 (2010) 955–959.
  8. C. Thanamun, P. Limsuwan, K. Maneeintr, Treatment of produced water mixed with polymer from petroleum production, IOP Conf. Ser.: Earth Environ. Sci., 268 (2019) 12030.
  9. Y.R. Pi, Z.H. Zheng, M.T. Bao, Y.M. Li, Y.Y. Zhou, G.L. Sang, Treatment of partially hydrolyzed polyacrylamide wastewater by combined Fenton oxidation and anaerobic biological processes, Chem. Eng. J., 273 (2015) 1–6.
  10. N. Wang, Q. Zhao, Q. Li, G. Zhang, Y. Huang, Degradation of polyacrylamide in an ultrasonic-Fenton-like process using an acid-modified coal fly ash catalyst, Powder Technol., 39 (2020) 270–278.
  11. J.Y. Ren, J. Li, N. Jiang, K.F. Shang, N. Lu, Y. Wu, Degradation of trans-ferulic acid in aqueous solution by a water falling film DBD reactor: degradation performance, response surface methodology, reactive species analysis and toxicity evaluation, Sep. Purif. Technol., 235 (2020) 116226, doi: 10.1016/j. seppur.2019.116226.
  12. S.S. Kim, B. Kwon, J. Kim, Plasma catalytic methane conversion over sol-gel derived Ru/TiO2 catalyst in a dielectric-barrier discharge reactor, Catal. Commun., 8 (2007) 2204–2207.
  13. J.C. Lin, S.L. Lo, C.Y. Hu, Y.C. Lee, J. Kuo, Enhanced sonochemical degradation of perfluorooctanoic acid by sulfate ions, Ultrason. Sonochem., 22 (2015) 542–547.
  14. Y.J. Liao, Z. Zhong, S.P. Cui, D. Fu, P. Zhang, Dielectric barrier discharge coupling catalytic oxidation for highly efficient Hg0 conversion, ACS Omega, 6 (2021) 4899–4906.
  15. S.P. Cui, R.L. Hao, D. Fu. Integrated method of non-thermal plasma combined with catalytical oxidation for simultaneous removal of SO2 and NO, Fuel, 33 (2019) 10078–10089.
  16. A. Syakur, B. Zaman, D.Y. Nurmaliakasih, Statistical analysis of reducing biochemical oxygen demand (BOD) on industrial rubber wastewater using dielectric barrier discharge plasma, IOP Conf. Ser.: Mater. Sci. Eng., 190 (2017) 012026.
  17. A.W. Kinandana, S. Sumariyah, M. Nur, Analysis of plasmaactivated medium (PAM) in aqueous solution by an atmospheric pressure plasma jet (APPJ), MATEC Web Conf., 197 (2018) 02013, doi:10.1051/matecconf/201819702013.
  18. J. Rong, K. Zhu, M. Chen, Study on purification technology of polyacrylamide wastewater by non-thermal plasma, Plasma Sci. Technol., 21 (2019) 54008, doi: 10.1088/2058-6272/aafceb.
  19. W. Song, Y. Zhang, J. Yu, Y. Gao, T. Naitoc, G. Oinumac, Y. Inanagac, M. Yang, Rapid removal of polyacrylamide from wastewater by plasma in the gas–liquid interface, J. Environ. Sci., 83 (2019) 1–7.
  20. J.A. Giroto, A.C.S.C. Teixeira, C.A.O. Nascimento, R. Guardani, Photo-Fenton removal of water-soluble polymers, Chem. Eng. Process., 47 (2008) 2361–2369.
  21. R.P. Joshi, S.M. Thagard, Streamer-like electrical discharges in water: Part II. Environmental applications, Plasma Chem. Plasma Process., 33 (2013) 17–49.
  22. M. Matsui, H. Kato, M. Hoshino, P. Limão-Vieira, H. Tanaka, Cross sections for electron collisions with H2O: elastic scattering and electronic excitation for the ã3B1 and Ã1B1 states, J. Phys. Chem. Ref. Data, 50 (2021) 23103.
  23. J. Chen, J.H. Davidson, ozone production in the negative DC corona: the dependence of discharge polarity, Plasma Chem. Plasma Process., 23 (2003) 501–518.
  24. Y. Wang, B.W. Su, X.L. Gao, Study on factors influencing the viscosity of polyacrylamide solution, Adv. Mater. Res., 512–515 (2012) 2439–2442.
  25. D.J. Wang, H. Li, Y.R. Jiang, C.C. Zhao, Y.H. Zhao, Photocatalytic degradation of polyacrylamide in aqueous environment by cobalt azphthalocyanine, J. Compos. Mater., 38 (2021) 1576–1587.