References
- S. Vigneshwaran, P. Sirajudheen, P. Karthikeyan, S. Meenakshi,
Fabrication of sulfur-doped biochar derived from tapioca peel
waste with superior adsorption performance for the removal
of Malachite green and Rhodamine B dyes, Surf. Interfaces,
23 (2021) 100920, doi: 10.1016/j.surfin.2020.100920.
- S. Asha, C. Hentry, M.R. Bindhu, A.M. Al-Mohaimeed,
M.R. Abdel Gawwad, M.S. Elshikh, Improved photocatalytic
activity for degradation of textile dyeing waste water and
thiazine dyes using PbWO4 nanoparticles synthesized by
co-precipitation method, Environ. Res., 200 (2021) 111721,
doi:10.1016/j.envres.2021.111721.
- T. Cheng, H. Gao, G. Liu, Z. Pu, S. Wang, Z. Yi, X. Wu, H. Yang,
Preparation of core-shell heterojunction photocatalysts by
coating CdS nanoparticles onto Bi4Ti3O12 hierarchical
microspheres and their photocatalytic removal of organic
pollutants and Cr(VI) ions, Colloids Surf., A, 633 (2022) 127918,
doi:10.1016/j.colsurfa.2021.127918.
- N. Ahmad, J. Anae, M.Z. Khan, S. Sabir, X.J. Yang, V.K. Thakur,
P. Campo, F. Coulon, Visible light-conducting polymer
nanocomposites as efficient photocatalysts for the treatment
of organic pollutants in wastewater,
J. Environ. Manage.,
295 (2021) 113362, doi: 10.1016/j.jenvman.2021.113362.
- F.P. de Freitas, A.M.M.L. Carvalho, A. de C.O. Carneiro, M.A. de
Magalhães, M.F. Xisto, W.D. Canal, Adsorption of neutral red
dye by chitosan and activated carbon composite films, Heliyon,
7 (2021) e07629, doi:10.1016/j.heliyon.2021.e07629.
- M. Vakili, P. Amouzgar, G. Cagnetta, B. Wang, X. Guo,
A. Mojiri, E. Zeimaran, B. Salamatinia, Ultrasound-assisted
preparation of chitosan/nano-activated carbon composite beads
aminated with
(3-aminopropyl)triethoxysilane for adsorption
of acetaminophen from aqueous solutions, Polymers (Basel),
11 (2019) 1701, doi: 10.3390/polym11101701.
- F.I. El-Dossoki, T.M. Atwee, A.M. Hamada, A.A. El-Bindary,
Photocatalytic degradation of Remazol Red B and Rhodamine
B dyes using TiO2 nanomaterial: estimation of the effective
operating parameters, Desal. Water Treat., 233 (2021) 319–330.
- E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby,
Impact of CdS/SnO2 heterostructured nanoparticle as visible
light active photocatalyst for the removal methylene blue dye,
J. Photochem. Photobiol., A, 392 (2020) 112403, doi: 10.1016/j.
jphotochem.2020.112403.
- O.B. Ayodele, O.S. Togunwa, Catalytic activity of copper
modified bentonite supported ferrioxalate on the aqueous
degradation and kinetics of mineralization of Direct Blue 71,
Acid Green 25 and Reactive Blue 4 in photo-Fenton process,
Appl. Catal., A, 470 (2014) 285–293.
- A.R. Binupriya, M. Sathishkumar, C.S. Ku, S.-I. Yun,
Sequestration of Reactive Blue 4 by free and immobilized
Bacillus subtilis cells and its extracellular polysaccharides,
Colloids Surf., B, 76 (2010) 179–185.
- X. Jin, R. Wang, P. Jin, X. Shi, Y. Wang, L. Xu, X. Wang,
H. Xu, How can accumulated organics and salts deteriorate
the biological treatment unit in the printing and dyeing
wastewater recycling system?, Chem. Eng. J., 413 (2021) 127528,
doi: 10.1016/j.cej.2020.127528.
- A. Giwa, A. Dindi, J. Kujawa, Membrane bioreactors and
electrochemical processes for treatment of wastewaters
containing heavy metal ions, organics, micropollutants and
dyes: recent developments, J. Hazard. Mater., 370 (2019)
172–195.
- M. Shirvani, L. Naji, Interface engineering of electrochemically
deposited ZnO nanorods as electron transport layer in polymer
solar cells using organic dyes, Mater. Chem. Phys., 259 (2021)
124064, doi:10.1016/j.matchemphys.2020.124064.
- M. Sleiman, D. Vildozo, C. Ferronato, J.-M. Chvelon,
Photocatalytic degradation of azo dye Metanil Yellow:
optimization and kinetic modeling using a chemometric
approach, Appl. Catal., B, 77 (2007) 1–11.
- J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic
degradation and kinetics of Orange G using
nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. A: Chem., 260 (2006)
241–246.
- T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, H. Yang, Flexoelectricityinduced
enhancement in carrier separation and photocatalytic
activity of a photocatalyst, Appl. Surf. Sci., 566 (2021) 150669,
doi:10.1016/j.apsusc.2021.150669.
- H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary,
Photocatalytic degradation of organic dyes in the presence of
nanostructured titanium dioxide, J. Mol. Struct., 1200 (2020)
127115, doi:10.1016/j.molstruc.2019.127115.
- H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El‐Bindary, Efficient
photocatalytic degradation of Acid Red 57 using synthesized
ZnO nanowires, J. Chin. Chem. Soc., 66 (2019) 89–98.
- A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini,
M. Ischia, R. Ceccato, L. Palmisano, Photocatalytic activity
of nanocrystalline TiO2 (brookite, rutile and brookite-based)
powders prepared by thermohydrolysis of TiCl4 in aqueous
chloride solutions, Colloids Surf., A, 317 (2008) 366–376.
- M. Ghorbanpour, S. Lotfiman, Solid‐state immobilisation of
titanium dioxide nanoparticles onto nanoclay, Micro Nano
Lett., 11 (2016) 684–687.
- M. Ghorbanpour, C. Falamaki, Micro energy dispersive X-ray
fluorescence as a powerful complementary technique for the
analysis of bimetallic Au/Ag/glass nanolayer composites used
in surface plasmon resonance sensors, Appl. Opt., 51 (2012)
7733–7738.
- M.B. Shekardasht, M.H. Givianrad, P. Gharbani, Z. Mirjafary,
A. Mehrizad. Preparation of a novel Z-scheme
g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo red dye
under visible light, Diamond Relat. Mater., 109 (2020) 108008,
doi: 10.1016/j.diamond.2020.108008.
- M. Danish, M. Muneer, Facile synthesis of highly efficient
Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their
photocatalytic potential for the degradation of RhB dye:
efficiency, degradation kinetics, and mechanism pathway,
Ceram. Int., 47 (2021) 13043–13056.
- W. Shi, W. Sun, Y. Liu, X. Li, X. Lin, F. Guo, Y. Hong, Onion-ringlike
g-C3N4 modified with Bi3TaO7 quantum dots: a novel 0D/3D
S-scheme heterojunction for enhanced photocatalytic hydrogen
production under visible light irradiation, Renewable Energy,
182 (2021) 958–968.
- G. Wang, Y. Zhao, H. Ma, C. Zhang, X. Dong, X. Zhang,
Enhanced peroxymonosulfate activation on dual active sites of
N vacancy modified g-C3N4 under visible-light assistance and
its selective removal of organic pollutants, Sci. Total Environ.,
756 (2021) 144139, doi: 10.1016/j.scitotenv.2020.144139.
- D. Liu, Z. Jin, H. Li, G. Lu, Modulation of the excited-electron
recombination process by introduce g-C3N4
on Bi-based
bimetallic oxides photocatalyst, Appl. Surf. Sci., 423 (2017)
255–265.
- P. Lu, X. Hu, Y. Li, Y. Peng, M. Zhang, X. Jiang, Y. He, M. Fu,
F. Dong, Z. Zhang, Novel CaCO3/g-C3N4 composites with
enhanced charge separation and photocatalytic activity, J. Saudi
Chem. Soc., 23 (2019) 1109–1118.
- P. Guo, F. Zhao, X. Hu, Boron-and europium-co-doped g-C3N4
nanosheets: enhanced photocatalytic activity and reaction
mechanism for tetracycline degradation, Ceram. Int., 47 (2021)
16256–16268.
- W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, X. Wang, C. Wang,
Enhanced cocatalyst-support interaction and promoted electron
transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite
catalysts for hydrogen evolution, Appl. Catal., B, 288 (2021)
120034, doi: 10.1016/j.apcatb.2021.120034.
- T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight
into the enhanced photocatalytic activity of single-atom Pt, Pd
or Au-embedded g-C3N4, Appl. Surf. Sci., 433 (2018) 1175–1183.
- Y. Liu, H. Zhang, Y. Jiang, A new noble-metal-free co-catalyst
V8C7 on g-C3N4 with enhanced photocatalytic H2 evolution
activity, Appl. Catal., A, 625 (2021) 118341, doi: 10.1016/j.
apcata.2021.118341.
- A.A. El-Bindary, S.M. El-Marsafy, A.A. El-Maddah,
Enhancement of the photocatalytic activity of ZnO nanoparticles
by silver doping for the degradation of AY99 contaminants,
J. Mol. Struct., 1191 (2019) 76–84.
- M.A. Karimi, M. Atashkadi, M. Ranjbar, A. Habibi-Yangjeh,
Novel visible-light-driven photocatalyst of
NiO/Cd/g-C3N4 for
enhanced degradation of methylene blue, Arabian J. Chem.,
13 (2020) 5810–5820.
- G.R. Surikanti, P. Bajaj, M.V. Sunkara, g-C3N4-mediated
synthesis of Cu2O to obtain porous composites with improved
visible light photocatalytic degradation of organic dyes, ACS
Omega, 4 (2019) 17301–17316.
- R. Mohammadi, B. Gholipour, H. Alamgholiloo, S. Rostamnia,
H. Mohtasham, A. Zonouzi, S. Ramakrishna, M. Shokouhimehr,
Nano-construction of CuO nanorods decorated with g-C3N4
nanosheets (CuO/g-C3N4-NS) as a superb colloidal nanocatalyst
for liquid phase C–H conversion of aldehydes to amides, J. Mol.
Liq., 334 (2021) 116063, doi: 10.1016/j.molliq.2021.116063.
- V.S. Manikandan, S. Harish, J. Archana, M. Navaneethan,
Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT
nanostructure for photocatalytic degradation of tetracycline
and the evaluation of antimicrobial activity, Chemosphere,
287 (2022) 132050, doi: 10.1016/j.chemosphere.2021.132050.
- K. Moeller, J. Kobler, T. Bein, Colloidal suspensions of
nanometer‐sized mesoporous silica, Adv. Funct. Mater.,
17 (2007) 605–612.
- K. Kailasam, J.D. Epping, A. Thomas, S. Losse, H. Junge,
Mesoporous carbon nitride–silica composites by a combined
sol–gel/thermal condensation approach and their application as
photocatalysts, Energy Environ. Sci., 4 (2011) 4668–4674.
- D.P. Lapham, J.L. Lapham, BET surface area measurement of
commercial magnesium stearate by krypton adsorption in
preference to nitrogen adsorption, Int. J. Pharm., 568 (2019)
118522, doi:10.1016/j.ijpharm.2019.118522.
- P. Peng, H. Han, L. Hu, C. Guo, Y. Gao, Y. Xie, The calculations
of pore structure parameters from gas adsorption experiments
of shales: which models are better?, J. Nat. Gas Sci. Eng.,
94 (2021) 104060, doi:10.1016/j.jngse.2021.104060.
- H. Zhang, T. Ouyang, J. Li, M. Mu, X. Yin, Dual 2D CuSe/g-C3N4 heterostructure for boosting electrocatalytic reduction
of CO2, Electrochim. Acta, 390 (2021) 138766, doi: 10.1016/j.
electacta.2021.138766.
- N. Farooq, A. ur Rehman, A.M. Qureshi, Z. Ur Rehman,
A. Ahmad, M.K. Aslam, H.M.A. Javed, S. Hussain,
M.A. Habila,
N. Al Masoud, T. Saad Alomar, Au@GO@g-C3N4 and Fe2O3
nanocomposite for efficient photocatalytic and electrochemical
applications, Surf. Interfaces, 26 (2021) 101399, doi:10.1016/j.surfin.2021.101399.
- N. Hussain, H. Alawadhi, S.M.A. Rahman, M.A. Abdelkareem,
Facile synthesis of novel Cu2O-g-C3N4/Vulcan carbon
composite as anode material with enhanced electrochemical
performances in urea fuel cell, Sustainable Energy Technol.
Assess., 45 (2021) 101107, doi: 10.1016/j.seta.2021.101107.
- A.M. Paul, A. Sajeev, R. Nivetha, K. Gothandapani, P. Bhardwaj,
K. Govardhan, V. Raghavan, G. Jacob,
R. Sellapan, S.K. Jeong,
A.N. Grace, Cuprous oxide (Cu2O)/graphitic carbon nitride
(g-C3N4) nanocomposites for electrocatalytic hydrogen
evolution reaction, Diamond Relat. Mater., 107 (2020) 107899,
doi:10.1016/j.diamond.2020.107899.
- D. Li, S. Zuo, H. Xu, J. Zan, L. Sun, D. Han, W. Liao, B. Zhang,
D. Xia, Synthesis of a g-C3N4-Cu2O heterojunction with
enhanced visible light photocatalytic activity by PEG, J. Colloid
Interface Sci., 531 (2018) 28–36.
- L. Jarosiński, J. Pawlak, S.K.J. Al-Ani, Inverse logarithmic
derivative method for determining the energy gap and the type
of electron transitions as an alternative to the Tauc method, Opt.
Mater., 88 (2019) 667–673.
- Z. Yang, D. Chu, G. Jia, M. Yao, B. Liu, Significantly narrowed
bandgap and enhanced charge separation in porous, nitrogenvacancy
red g-C3N4 for visible light photocatalytic H2
production, Appl. Surf. Sci., 504 (2020) 144407, doi: 10.1016/j.
apsusc.2019.144407.
- C. Ji, S. Yin, S. Sun, S. Yang, An in situ mediator-free route to
fabricate Cu2O/g-C3N4 type-II heterojunctions for enhanced
visible-light photocatalytic H2 generation, Appl. Surf. Sci.,
434 (2018) 1224–1231.
- G.X. Zhu, T.L. Lu, L. Han, Y.Z. Zhan, Graphitic carbon
nitride (g-C3N4) as an efficient metal-free Fenton-like catalyst
for degrading organic pollutants: the overlooked nonphotocatalytic
activity, Water Sci. Technol., 81 (2020) 518–528.
- I. Ahmad, Comparative study of metal (Al, Mg, Ni, Cu and
Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts
for the degradation of organic pollutants, Sep. Purif. Technol.,
251 (2020) 117372, doi:10.1016/j.seppur.2020.117372.
- L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu,
Z. Zhao, Q. Zhang, H. Ni, L. Chen, Dataset of emission and
excitation spectra, UV–vis absorption spectra, and XPS spectra
of graphitic C3N4, Data Brief, 21 (2018) 501–510.
- T. Zhang, I.P. Souza, J. Xu, V.C. Almeida, T. Asefa, Mesoporous
graphitic carbon nitrides decorated with Cu nanoparticles:
efficient photocatalysts for degradation of tartrazine yellow dye,
Nanomaterials (Basel), 8 (2018) 636, doi: 10.3390/nano8090636.
- X. Ye, S. Shi, Y. Zeng, M. Ding Z. Wu, Carbon defective carbon
nitride with large specific surface area by hot oxygen etching
for promoting photocatalytic performance, Colloids Surf., A,
632 (2022) 127732, doi:10.1016/j.colsurfa.2021.127732.
- A.T. Dhiwahar, S. Maruthamuthu, R. Marnadu, M. Sundararajan,
M. Aslam Manthrammel, M. Shkir, P. Sakthivel,
V.R.M. Reddy, Improved photocatalytic degradation of Rhodamine
B under visible light and magnetic properties using
microwave combustion grown Ni doped copper ferrite spinel
nanoparticles, Solid State Sci., 113 (2021) 106542, doi: 10.1016/j.
solidstatesciences.2021.106542.
- C. Zhou, Z. Liu, L. Fang, Y. Guo, Y. Feng, M. Yang, Kinetic
and mechanistic study of Rhodamine B degradation by H2O2
and Cu/Al2O3/g-C3N4 composite, Catalysts, 10 (2020) 317, doi:
10.3390/catal10030317.
- H. Yang, A short review on heterojunction photocatalysts: carrier
transfer behavior and photocatalytic mechanisms, Mater. Res.
Bull., 142 (2021) 111406, doi: 10.1016/j.materresboll.2021.111406.