References

  1. S. Vigneshwaran, P. Sirajudheen, P. Karthikeyan, S. Meenakshi, Fabrication of sulfur-doped biochar derived from tapioca peel waste with superior adsorption performance for the removal of Malachite green and Rhodamine B dyes, Surf. Interfaces, 23 (2021) 100920, doi: 10.1016/j.surfin.2020.100920.
  2. S. Asha, C. Hentry, M.R. Bindhu, A.M. Al-Mohaimeed, M.R. Abdel Gawwad, M.S. Elshikh, Improved photocatalytic activity for degradation of textile dyeing waste water and thiazine dyes using PbWO4 nanoparticles synthesized by co-precipitation method, Environ. Res., 200 (2021) 111721, doi:10.1016/j.envres.2021.111721.
  3. T. Cheng, H. Gao, G. Liu, Z. Pu, S. Wang, Z. Yi, X. Wu, H. Yang, Preparation of core-shell heterojunction photocatalysts by coating CdS nanoparticles onto Bi4Ti3O12 hierarchical microspheres and their photocatalytic removal of organic pollutants and Cr(VI) ions, Colloids Surf., A, 633 (2022) 127918, doi:10.1016/j.colsurfa.2021.127918.
  4. N. Ahmad, J. Anae, M.Z. Khan, S. Sabir, X.J. Yang, V.K. Thakur, P. Campo, F. Coulon, Visible light-conducting polymer nanocomposites as efficient photocatalysts for the treatment of organic pollutants in wastewater,
    J. Environ. Manage., 295 (2021) 113362, doi: 10.1016/j.jenvman.2021.113362.
  5. F.P. de Freitas, A.M.M.L. Carvalho, A. de C.O. Carneiro, M.A. de Magalhães, M.F. Xisto, W.D. Canal, Adsorption of neutral red dye by chitosan and activated carbon composite films, Heliyon, 7 (2021) e07629, doi:10.1016/j.heliyon.2021.e07629.
  6. M. Vakili, P. Amouzgar, G. Cagnetta, B. Wang, X. Guo, A. Mojiri, E. Zeimaran, B. Salamatinia, Ultrasound-assisted preparation of chitosan/nano-activated carbon composite beads aminated with
    (3-aminopropyl)triethoxysilane for adsorption of acetaminophen from aqueous solutions, Polymers (Basel), 11 (2019) 1701, doi: 10.3390/polym11101701.
  7. F.I. El-Dossoki, T.M. Atwee, A.M. Hamada, A.A. El-Bindary, Photocatalytic degradation of Remazol Red B and Rhodamine B dyes using TiO2 nanomaterial: estimation of the effective operating parameters, Desal. Water Treat., 233 (2021) 319–330.
  8. E.E. El-Katori, M.A. Ahmed, A.A. El-Bindary, A.M. Oraby, Impact of CdS/SnO2 heterostructured nanoparticle as visible light active photocatalyst for the removal methylene blue dye, J. Photochem. Photobiol., A, 392 (2020) 112403, doi: 10.1016/j. jphotochem.2020.112403.
  9. O.B. Ayodele, O.S. Togunwa, Catalytic activity of copper modified bentonite supported ferrioxalate on the aqueous degradation and kinetics of mineralization of Direct Blue 71, Acid Green 25 and Reactive Blue 4 in photo-Fenton process, Appl. Catal., A, 470 (2014) 285–293.
  10. A.R. Binupriya, M. Sathishkumar, C.S. Ku, S.-I. Yun, Sequestration of Reactive Blue 4 by free and immobilized Bacillus subtilis cells and its extracellular polysaccharides, Colloids Surf., B, 76 (2010) 179–185.
  11. X. Jin, R. Wang, P. Jin, X. Shi, Y. Wang, L. Xu, X. Wang, H. Xu, How can accumulated organics and salts deteriorate the biological treatment unit in the printing and dyeing wastewater recycling system?, Chem. Eng. J., 413 (2021) 127528, doi: 10.1016/j.cej.2020.127528.
  12. A. Giwa, A. Dindi, J. Kujawa, Membrane bioreactors and electrochemical processes for treatment of wastewaters containing heavy metal ions, organics, micropollutants and dyes: recent developments, J. Hazard. Mater., 370 (2019) 172–195.
  13. M. Shirvani, L. Naji, Interface engineering of electrochemically deposited ZnO nanorods as electron transport layer in polymer solar cells using organic dyes, Mater. Chem. Phys., 259 (2021) 124064, doi:10.1016/j.matchemphys.2020.124064.
  14. M. Sleiman, D. Vildozo, C. Ferronato, J.-M. Chvelon, Photocatalytic degradation of azo dye Metanil Yellow: optimization and kinetic modeling using a chemometric approach, Appl. Catal., B, 77 (2007) 1–11.
  15. J. Sun, X. Wang, J. Sun, R. Sun, S. Sun, L. Qiao, Photocatalytic degradation and kinetics of Orange G using
    nano-sized Sn(IV)/TiO2/AC photocatalyst, J. Mol. Catal. A: Chem., 260 (2006) 241–246.
  16. T. Cheng, H. Gao, R. Li, S. Wang, Z. Yi, H. Yang, Flexoelectricityinduced enhancement in carrier separation and photocatalytic activity of a photocatalyst, Appl. Surf. Sci., 566 (2021) 150669, doi:10.1016/j.apsusc.2021.150669.
  17. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide, J. Mol. Struct., 1200 (2020) 127115, doi:10.1016/j.molstruc.2019.127115.
  18. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El‐Bindary, Efficient photocatalytic degradation of Acid Red 57 using synthesized ZnO nanowires, J. Chin. Chem. Soc., 66 (2019) 89–98.
  19. A. Di Paola, G. Cufalo, M. Addamo, M. Bellardita, R. Campostrini, M. Ischia, R. Ceccato, L. Palmisano, Photocatalytic activity of nanocrystalline TiO2 (brookite, rutile and brookite-based) powders prepared by thermohydrolysis of TiCl4 in aqueous chloride solutions, Colloids Surf., A, 317 (2008) 366–376.
  20. M. Ghorbanpour, S. Lotfiman, Solid‐state immobilisation of titanium dioxide nanoparticles onto nanoclay, Micro Nano Lett., 11 (2016) 684–687.
  21. M. Ghorbanpour, C. Falamaki, Micro energy dispersive X-ray fluorescence as a powerful complementary technique for the analysis of bimetallic Au/Ag/glass nanolayer composites used in surface plasmon resonance sensors, Appl. Opt., 51 (2012) 7733–7738.
  22. M.B. Shekardasht, M.H. Givianrad, P. Gharbani, Z. Mirjafary, A. Mehrizad. Preparation of a novel Z-scheme
    g-C3N4/RGO/Bi2Fe4O9 nanophotocatalyst for degradation of Congo red dye under visible light, Diamond Relat. Mater., 109 (2020) 108008, doi: 10.1016/j.diamond.2020.108008.
  23. M. Danish, M. Muneer, Facile synthesis of highly efficient Co@ZnSQDs/g-C3N4/MWCNT nanocomposites and their photocatalytic potential for the degradation of RhB dye: efficiency, degradation kinetics, and mechanism pathway, Ceram. Int., 47 (2021) 13043–13056.
  24. W. Shi, W. Sun, Y. Liu, X. Li, X. Lin, F. Guo, Y. Hong, Onion-ringlike g-C3N4 modified with Bi3TaO7 quantum dots: a novel 0D/3D S-scheme heterojunction for enhanced photocatalytic hydrogen production under visible light irradiation, Renewable Energy, 182 (2021) 958–968.
  25. G. Wang, Y. Zhao, H. Ma, C. Zhang, X. Dong, X. Zhang, Enhanced peroxymonosulfate activation on dual active sites of N vacancy modified g-C3N4 under visible-light assistance and its selective removal of organic pollutants, Sci. Total Environ., 756 (2021) 144139, doi: 10.1016/j.scitotenv.2020.144139.
  26. D. Liu, Z. Jin, H. Li, G. Lu, Modulation of the excited-electron recombination process by introduce g-C3N4
    on Bi-based bimetallic oxides photocatalyst, Appl. Surf. Sci., 423 (2017) 255–265.
  27. P. Lu, X. Hu, Y. Li, Y. Peng, M. Zhang, X. Jiang, Y. He, M. Fu, F. Dong, Z. Zhang, Novel CaCO3/g-C3N4 composites with enhanced charge separation and photocatalytic activity, J. Saudi Chem. Soc., 23 (2019) 1109–1118.
  28. P. Guo, F. Zhao, X. Hu, Boron-and europium-co-doped g-C3N4 nanosheets: enhanced photocatalytic activity and reaction mechanism for tetracycline degradation, Ceram. Int., 47 (2021) 16256–16268.
  29. W. Li, X. Chu, F. Wang, Y. Dang, X. Liu, X. Wang, C. Wang, Enhanced cocatalyst-support interaction and promoted electron transfer of 3D porous g-C3N4/GO-M (Au, Pd, Pt) composite catalysts for hydrogen evolution, Appl. Catal., B, 288 (2021) 120034, doi: 10.1016/j.apcatb.2021.120034.
  30. T. Tong, B. Zhu, C. Jiang, B. Cheng, J. Yu, Mechanistic insight into the enhanced photocatalytic activity of single-atom Pt, Pd or Au-embedded g-C3N4, Appl. Surf. Sci., 433 (2018) 1175–1183.
  31. Y. Liu, H. Zhang, Y. Jiang, A new noble-metal-free co-catalyst V8C7 on g-C3N4 with enhanced photocatalytic H2 evolution activity, Appl. Catal., A, 625 (2021) 118341, doi: 10.1016/j. apcata.2021.118341.
  32. A.A. El-Bindary, S.M. El-Marsafy, A.A. El-Maddah, Enhancement of the photocatalytic activity of ZnO nanoparticles by silver doping for the degradation of AY99 contaminants, J. Mol. Struct., 1191 (2019) 76–84.
  33. M.A. Karimi, M. Atashkadi, M. Ranjbar, A. Habibi-Yangjeh, Novel visible-light-driven photocatalyst of
    NiO/Cd/g-C3N4 for enhanced degradation of methylene blue, Arabian J. Chem., 13 (2020) 5810–5820.
  34. G.R. Surikanti, P. Bajaj, M.V. Sunkara, g-C3N4-mediated synthesis of Cu2O to obtain porous composites with improved visible light photocatalytic degradation of organic dyes, ACS Omega, 4 (2019) 17301–17316.
  35. R. Mohammadi, B. Gholipour, H. Alamgholiloo, S. Rostamnia, H. Mohtasham, A. Zonouzi, S. Ramakrishna, M. Shokouhimehr, Nano-construction of CuO nanorods decorated with g-C3N4 nanosheets (CuO/g-C3N4-NS) as a superb colloidal nanocatalyst for liquid phase C–H conversion of aldehydes to amides, J. Mol. Liq., 334 (2021) 116063, doi: 10.1016/j.molliq.2021.116063.
  36. V.S. Manikandan, S. Harish, J. Archana, M. Navaneethan, Fabrication of novel hybrid Z-Scheme WO3@g-C3N4@MWCNT nanostructure for photocatalytic degradation of tetracycline and the evaluation of antimicrobial activity, Chemosphere, 287 (2022) 132050, doi: 10.1016/j.chemosphere.2021.132050.
  37. K. Moeller, J. Kobler, T. Bein, Colloidal suspensions of nanometer‐sized mesoporous silica, Adv. Funct. Mater., 17 (2007) 605–612.
  38. K. Kailasam, J.D. Epping, A. Thomas, S. Losse, H. Junge, Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts, Energy Environ. Sci., 4 (2011) 4668–4674.
  39. D.P. Lapham, J.L. Lapham, BET surface area measurement of commercial magnesium stearate by krypton adsorption in preference to nitrogen adsorption, Int. J. Pharm., 568 (2019) 118522, doi:10.1016/j.ijpharm.2019.118522.
  40. P. Peng, H. Han, L. Hu, C. Guo, Y. Gao, Y. Xie, The calculations of pore structure parameters from gas adsorption experiments of shales: which models are better?, J. Nat. Gas Sci. Eng., 94 (2021) 104060, doi:10.1016/j.jngse.2021.104060.
  41. H. Zhang, T. Ouyang, J. Li, M. Mu, X. Yin, Dual 2D CuSe/g-C3N4 heterostructure for boosting electrocatalytic reduction of CO2, Electrochim. Acta, 390 (2021) 138766, doi: 10.1016/j. electacta.2021.138766.
  42. N. Farooq, A. ur Rehman, A.M. Qureshi, Z. Ur Rehman, A. Ahmad, M.K. Aslam, H.M.A. Javed, S. Hussain,
    M.A. Habila, N. Al Masoud, T. Saad Alomar, Au@GO@g-C3N4 and Fe2O3 nanocomposite for efficient photocatalytic and electrochemical applications, Surf. Interfaces, 26 (2021) 101399, doi:10.1016/j.surfin.2021.101399.
  43. N. Hussain, H. Alawadhi, S.M.A. Rahman, M.A. Abdelkareem, Facile synthesis of novel Cu2O-g-C3N4/Vulcan carbon composite as anode material with enhanced electrochemical performances in urea fuel cell, Sustainable Energy Technol. Assess., 45 (2021) 101107, doi: 10.1016/j.seta.2021.101107.
  44. A.M. Paul, A. Sajeev, R. Nivetha, K. Gothandapani, P. Bhardwaj, K. Govardhan, V. Raghavan, G. Jacob,
    R. Sellapan, S.K. Jeong, A.N. Grace, Cuprous oxide (Cu2O)/graphitic carbon nitride (g-C3N4) nanocomposites for electrocatalytic hydrogen evolution reaction, Diamond Relat. Mater., 107 (2020) 107899, doi:10.1016/j.diamond.2020.107899.
  45. D. Li, S. Zuo, H. Xu, J. Zan, L. Sun, D. Han, W. Liao, B. Zhang, D. Xia, Synthesis of a g-C3N4-Cu2O heterojunction with enhanced visible light photocatalytic activity by PEG, J. Colloid Interface Sci., 531 (2018) 28–36.
  46. L. Jarosiński, J. Pawlak, S.K.J. Al-Ani, Inverse logarithmic derivative method for determining the energy gap and the type of electron transitions as an alternative to the Tauc method, Opt. Mater., 88 (2019) 667–673.
  47. Z. Yang, D. Chu, G. Jia, M. Yao, B. Liu, Significantly narrowed bandgap and enhanced charge separation in porous, nitrogenvacancy red g-C3N4 for visible light photocatalytic H2 production, Appl. Surf. Sci., 504 (2020) 144407, doi: 10.1016/j. apsusc.2019.144407.
  48. C. Ji, S. Yin, S. Sun, S. Yang, An in situ mediator-free route to fabricate Cu2O/g-C3N4 type-II heterojunctions for enhanced visible-light photocatalytic H2 generation, Appl. Surf. Sci., 434 (2018) 1224–1231.
  49. G.X. Zhu, T.L. Lu, L. Han, Y.Z. Zhan, Graphitic carbon nitride (g-C3N4) as an efficient metal-free Fenton-like catalyst for degrading organic pollutants: the overlooked nonphotocatalytic activity, Water Sci. Technol., 81 (2020) 518–528.
  50. I. Ahmad, Comparative study of metal (Al, Mg, Ni, Cu and Ag) doped ZnO/g-C3N4 composites: efficient photocatalysts for the degradation of organic pollutants, Sep. Purif. Technol., 251 (2020) 117372, doi:10.1016/j.seppur.2020.117372.
  51. L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, L. Chen, Dataset of emission and excitation spectra, UV–vis absorption spectra, and XPS spectra of graphitic C3N4, Data Brief, 21 (2018) 501–510.
  52. T. Zhang, I.P. Souza, J. Xu, V.C. Almeida, T. Asefa, Mesoporous graphitic carbon nitrides decorated with Cu nanoparticles: efficient photocatalysts for degradation of tartrazine yellow dye, Nanomaterials (Basel), 8 (2018) 636, doi: 10.3390/nano8090636.
  53. X. Ye, S. Shi, Y. Zeng, M. Ding Z. Wu, Carbon defective carbon nitride with large specific surface area by hot oxygen etching for promoting photocatalytic performance, Colloids Surf., A, 632 (2022) 127732, doi:10.1016/j.colsurfa.2021.127732.
  54. A.T. Dhiwahar, S. Maruthamuthu, R. Marnadu, M. Sundararajan, M. Aslam Manthrammel, M. Shkir, P. Sakthivel, V.R.M. Reddy, Improved photocatalytic degradation of Rhodamine B under visible light and magnetic properties using microwave combustion grown Ni doped copper ferrite spinel nanoparticles, Solid State Sci., 113 (2021) 106542, doi: 10.1016/j. solidstatesciences.2021.106542.
  55. C. Zhou, Z. Liu, L. Fang, Y. Guo, Y. Feng, M. Yang, Kinetic and mechanistic study of Rhodamine B degradation by H2O2 and Cu/Al2O3/g-C3N4 composite, Catalysts, 10 (2020) 317, doi: 10.3390/catal10030317.
  56. H. Yang, A short review on heterojunction photocatalysts: carrier transfer behavior and photocatalytic mechanisms, Mater. Res. Bull., 142 (2021) 111406, doi: 10.1016/j.materresboll.2021.111406.