References

  1. V.K. Sharma, R. Zboril, T.J. McDonald, Formation and toxicity of brominated disinfection byproducts during chlorination and chloramination of water: a review, J. Environ. Sci. Health., Part B, 49 (2013) 212–228.
  2. Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Comparison of ferrate and ozone pre-oxidation on disinfection byproduct formation from chlorination and chloramination, Water Res., 156 (2019) 110–124.
  3. V. Rougé, U. von Gunten, M. Lafont de Sentenac, M. Massi, P.J. Wright, J.-P. Croué, S. Allard, Comparison of the impact of ozone, chlorine dioxide, ferrate and permanganate preoxidation on organic disinfection byproduct formation during post-chlorination, Environ. Sci. Water Res. Technol., 6 (2020) 2382–2395.
  4. Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Bromide oxidation by ferrate(VI): the formation of active bromine and bromate, Water Res., 96 (2016) 188–197.
  5. T. Yu, Y. Chen, Effects of elevated carbon dioxide on environmental microbes and its mechanisms: a review, Sci. Total Environ., 655 (2019) 865–879.
  6. A.V. Suslov, I.N. Suslova, B.F. Yarovoy, A.Yu. Shadrin, A.A. Murzin, N.V. Sapozhnikova, A.A. Lumpov,
    A.S. Dormidonova, Inactivation of microorganisms using supercritical CO2, Supercrit. Fluids: Theory Pract., 3 (2008) 3–12 (in Russian).
  7. L. Garcia-Gonzalez, A.H. Geeraerd, S. Spilimbergo, K. Elst, L. Van Ginneken, J. Debevere, J.F. Van Impe,
    F. Devlieghere, High pressure carbon dioxide inactivation of microorganisms in foods: the past, the present and the future, Int. J. Food Microbiol., 117 (2007) 1–28.
  8. I. Paniagua-Martínez, A. Mulet, M.A. García-Alvarado, J. Benedito, Inactivation of the microbiota and effect on the quality attributes of pineapple juice using a continuous flow ultrasound-assisted supercritical carbon dioxide system, Food Sci. Technol. Int., 24 (2018) 547–554.
  9. B.G. Werner, J.H. Hotchkiss, Continuous flow nonthermal CO2 processing: the lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk, J. Dairy Sci., 89 (2006) 872–881.
  10. M. Cuppini, J. Zeni, J. Barbosa, E. Franceschi, G. Toniazzo, R.L. Cansian, Inactivation of Staphylococcus aureus in raw salmon with supercritical CO2 using experimental design, Food Sci. Technol., 36 (2016) 8–11.
  11. N. Ribeiro, G.C. Soares, V. Santos-Rosales, A. Concheiro, C. Alvarez-Lorenzo, C.A. García-González, A.L. Oliveira, A new era for sterilization based on supercritical CO2 technology, J. Biomed. Mater. Res. Part B, 108 (2020) 399–428.
  12. Md. S. Hossain, N.N. Nik Ab Rahman, V. Balakrishnan, A.F.M. Alkarkhi, Z. Ahmad Rajion, M.O. Ab Kadir, Optimizing supercritical carbon dioxide in the inactivation of bacteria in clinical solid waste by using response surface methodology, Waste Manage., 38 (2015) 462–473.
  13. Y.Y. Chen, F. Temelli, M.G. Gänzle, Mechanisms of inactivation of dry Escherichia coli by high-pressure carbon dioxide, Appl. Environ. Microbiol., 83 (2017) e00062-17, doi: 10.1128/AEM.00062-17.
  14. F. Kobayashi, Y. Hayata, H. Ikeura, M. Tamaki, N. Muto, Y. Osajima, Inactivation of Escherichia coli by CO2 microbubbles at a lower pressure and near room temperature, Transactions of the ASABE (Am. Soc. Agric. Biol. Eng.), 52 (2009) 1621–1626.
  15. F. Kobayashi, S. Odake, Intracellular acidification and damage of cellular membrane of Saccharomyces pastorianus by lowpressure carbon dioxide microbubbles, Food Control, 71 (2017) 365–370.
  16. C. Yao, X. Li, W. Bi, C. Jiang, Relationship between membrane damage, leakage of intracellular compounds, and inactivation of Escherichia coli treated by pressurized CO2, J. Basic Microbiol., 54 (2013) 858–865.
  17. M.K. Oulé, K. Tano, A.-M. Bernier, J. Arul, Escherichia coli inactivation mechanism by pressurized CO2, Can. J. Microbiol., 52 (2006) 1208–1217.
  18. F. Kobayashi, S. Odake, Temperature-dependency on the inactivation of Saccharomyces pastorianus
    by low-pressure carbon dioxide microbubbles, J. Food Sci. Technol., 57 (2020) 588–594.
  19. W. Klangpetch, S. Noma, N. Igura, M. Shimoda, The effect of low-pressure carbonation on the heat inactivation of Escherichia coli, Biosci. Biotechnol., Biochem., 75 (2011) 1945–1950.
  20. Y. Chengsong, L. Huirong, Z. Menglu, C. Sheng, Y. Xin, Characterization and potential mechanisms of highly antibiotic tolerant VBNC Escherichia coli induced by low level chlorination, Sci. Rep., 10 (2020), doi:10.1038/s41598-020-58106-3.
  21. S.J. Schink, E. Biselli, C. Ammar, U. Gerland, Death rate of E. coli during starvation is set by maintenance cost and biomass recycling, Cell Syst., 9 (2019) 64–73.
  22. MI 10.2.1-113–2005, Sanitary and Microbiological Quality Control of Drinking Water, Order of the Ministry of Health of Ukraine from 03.02.2005 No. 60 (in Ukrainian).
  23. V.V. Goncharuk, N.G. Potapchenko, O.S. Savluk, V.N. Kosinova, A.N. Sova, Disinfection of water by ozone: effect of inorganic impurities on kinetics of water disinfection, J. Water Chem. Technol., 23 (2001) 55–63.
  24. DSTU 8887:2019, Water Quality. Determination of Microorganisms in Viable But Nonculturable State in Water, Kyiv.: SE “UkrNDNC”, 2020, 10 p, (in Ukrainian).
  25. D. Pinto, V. Almeida, M. Almeida Santos, L. Chambel, Resuscitation of Escherichia coli VBNC cells depends on a variety of environmental or chemical stimuli, J. Appl. Microbiol., 110 (2011) 1601–1611.
  26. C. Ortuño, M.T. Martínez-Pastor, A. Mulet, J. Benedito, Supercritical carbon dioxide inactivation of Escherichia coli and Saccharomyces cerevisiae in different growth stages, J. Supercrit. Fluids, 63 (2012) 8–15.
  27. W.F. Wolkers, H. Oldenhof, F. Tang, J. Han, J. Bigalk, H. Sieme, Factors affecting the membrane permeability barrier function of cells during preservation technologies, Langmuir, 35 (2019) 7520–7528.
  28. H.H. Mantsch, R.N. McElhaney, Phospholipid phase transitions in model and biological membranes as studied by infrared spectroscopy, Chem. Phys. Lipids, 57 (1991) 213–226.
  29. T. Ding, Y. Su, Q. Xiang, X. Zhao, S. Chen, X. Ye, D. Liu, Significance of viable but nonculturable Escherichia coli: induction, detection, and control, J. Microbiol. Biotechnol., 27 (2017) 417–428.
  30. V.V. Goncharuk, A.V. Rudenko, M.N. Saprykina, E.S. Bolgova, Detection of microorganisms in nonculturable state in chlorinated water, J. Water Chem. Technol., 40 (2018) 40–45.
  31. Y. Fu, Y. Jia, J. Fan, C. Yu, C. Yu, C. Shen, Induction of Escherichia coli O157:H7 into a viable but non-culturable state by high temperature and its resuscitation, Environ. Microbiol. Rep., 12 (2020) 568–577.
  32. F. Zhao, X. Bi, Y. Hao, X. Liao, Induction of viable but nonculturable Escherichia coli O157:H7 by high pressure CO2 and its characteristics, PLoS One, 8 (2013) e62388, doi: 10.1371/journal.pone.0062388.
  33. S. Giulitti, C. Cinquemani, A. Quaranta, S. Spilimbergo, Real time intracellular pH dynamics in Listeria innocua under CO2 and N2O pressure, J. Supercrit. Fluids, 58 (2011) 385–390.
  34. S. Giulitti, C. Cinquemani, S. Spilimbergo, High pressure gases: role of dynamic intracellular pH in pasteurization, Biotechnol. Bioeng., 108 (2011) 1211–1214.