References
- V.K. Sharma, R. Zboril, T.J. McDonald, Formation and toxicity
of brominated disinfection byproducts during chlorination
and chloramination of water: a review, J. Environ. Sci. Health.,
Part B, 49 (2013) 212–228.
- Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Comparison
of ferrate and ozone pre-oxidation on disinfection byproduct
formation from chlorination and chloramination, Water Res.,
156 (2019) 110–124.
- V. Rougé, U. von Gunten, M. Lafont de Sentenac, M. Massi,
P.J. Wright, J.-P. Croué, S. Allard, Comparison of the impact
of ozone, chlorine dioxide, ferrate and permanganate preoxidation
on organic disinfection byproduct formation during
post-chlorination, Environ. Sci. Water Res. Technol., 6 (2020)
2382–2395.
- Y. Jiang, J.E. Goodwill, J.E. Tobiason, D.A. Reckhow, Bromide
oxidation by ferrate(VI): the formation of active bromine and
bromate, Water Res., 96 (2016) 188–197.
- T. Yu, Y. Chen, Effects of elevated carbon dioxide on
environmental microbes and its mechanisms: a review,
Sci. Total Environ., 655 (2019) 865–879.
- A.V. Suslov, I.N. Suslova, B.F. Yarovoy, A.Yu. Shadrin,
A.A. Murzin, N.V. Sapozhnikova, A.A. Lumpov,
A.S. Dormidonova,
Inactivation of microorganisms using supercritical
CO2, Supercrit. Fluids: Theory Pract., 3 (2008) 3–12 (in Russian).
- L. Garcia-Gonzalez, A.H. Geeraerd, S. Spilimbergo, K. Elst,
L. Van Ginneken, J. Debevere, J.F. Van Impe,
F. Devlieghere,
High pressure carbon dioxide inactivation of microorganisms
in foods: the past, the present and the future, Int. J. Food
Microbiol., 117 (2007) 1–28.
- I. Paniagua-Martínez, A. Mulet, M.A. García-Alvarado,
J. Benedito, Inactivation of the microbiota and effect on the
quality attributes of pineapple juice using a continuous flow
ultrasound-assisted supercritical carbon dioxide system, Food
Sci. Technol. Int., 24 (2018) 547–554.
- B.G. Werner, J.H. Hotchkiss, Continuous flow nonthermal
CO2 processing: the lethal effects of subcritical and supercritical
CO2 on total microbial populations and bacterial spores in
raw milk, J. Dairy Sci., 89 (2006) 872–881.
- M. Cuppini, J. Zeni, J. Barbosa, E. Franceschi, G. Toniazzo,
R.L. Cansian, Inactivation of Staphylococcus aureus in raw
salmon with supercritical CO2 using experimental design, Food
Sci. Technol., 36 (2016) 8–11.
- N. Ribeiro, G.C. Soares, V. Santos-Rosales, A. Concheiro,
C. Alvarez-Lorenzo, C.A. García-González, A.L. Oliveira,
A new era for sterilization based on supercritical CO2
technology, J. Biomed. Mater. Res. Part B, 108 (2020) 399–428.
- Md. S. Hossain, N.N. Nik Ab Rahman, V. Balakrishnan,
A.F.M. Alkarkhi, Z. Ahmad Rajion, M.O. Ab Kadir, Optimizing
supercritical carbon dioxide in the inactivation of bacteria in
clinical solid waste by using response surface methodology,
Waste Manage., 38 (2015) 462–473.
- Y.Y. Chen, F. Temelli, M.G. Gänzle, Mechanisms of inactivation
of dry Escherichia coli by high-pressure carbon dioxide,
Appl. Environ. Microbiol., 83 (2017) e00062-17, doi: 10.1128/AEM.00062-17.
- F. Kobayashi, Y. Hayata, H. Ikeura, M. Tamaki, N. Muto,
Y. Osajima, Inactivation of Escherichia coli by CO2 microbubbles
at a lower pressure and near room temperature, Transactions
of the ASABE (Am. Soc. Agric. Biol. Eng.), 52 (2009) 1621–1626.
- F. Kobayashi, S. Odake, Intracellular acidification and damage
of cellular membrane of Saccharomyces pastorianus by lowpressure
carbon dioxide microbubbles, Food Control, 71 (2017)
365–370.
- C. Yao, X. Li, W. Bi, C. Jiang, Relationship between membrane
damage, leakage of intracellular compounds, and inactivation
of Escherichia coli treated by pressurized CO2, J. Basic Microbiol.,
54 (2013) 858–865.
- M.K. Oulé, K. Tano, A.-M. Bernier, J. Arul, Escherichia coli inactivation mechanism by pressurized CO2, Can. J. Microbiol.,
52 (2006) 1208–1217.
- F. Kobayashi, S. Odake, Temperature-dependency on the
inactivation of Saccharomyces pastorianus
by low-pressure
carbon dioxide microbubbles, J. Food Sci. Technol., 57 (2020)
588–594.
- W. Klangpetch, S. Noma, N. Igura, M. Shimoda, The effect of
low-pressure carbonation on the heat inactivation of Escherichia
coli, Biosci. Biotechnol., Biochem., 75 (2011) 1945–1950.
- Y. Chengsong, L. Huirong, Z. Menglu, C. Sheng, Y. Xin,
Characterization and potential mechanisms of highly antibiotic
tolerant VBNC Escherichia coli induced by low level chlorination,
Sci. Rep., 10 (2020), doi:10.1038/s41598-020-58106-3.
- S.J. Schink, E. Biselli, C. Ammar, U. Gerland, Death rate of
E. coli during starvation is set by maintenance cost and biomass
recycling, Cell Syst., 9 (2019) 64–73.
- MI 10.2.1-113–2005, Sanitary and Microbiological Quality
Control of Drinking Water, Order of the Ministry of Health of
Ukraine from 03.02.2005 No. 60 (in Ukrainian).
- V.V. Goncharuk, N.G. Potapchenko, O.S. Savluk, V.N. Kosinova,
A.N. Sova, Disinfection of water by ozone: effect of inorganic
impurities on kinetics of water disinfection, J. Water Chem.
Technol., 23 (2001) 55–63.
- DSTU 8887:2019, Water Quality. Determination of Microorganisms
in Viable But Nonculturable State in Water, Kyiv.:
SE “UkrNDNC”, 2020, 10 p, (in Ukrainian).
- D. Pinto, V. Almeida, M. Almeida Santos, L. Chambel,
Resuscitation of Escherichia coli VBNC cells depends on a variety
of environmental or chemical stimuli, J. Appl. Microbiol.,
110 (2011) 1601–1611.
- C. Ortuño, M.T. Martínez-Pastor, A. Mulet, J. Benedito,
Supercritical carbon dioxide inactivation of Escherichia coli and
Saccharomyces cerevisiae in different growth stages, J. Supercrit.
Fluids, 63 (2012) 8–15.
- W.F. Wolkers, H. Oldenhof, F. Tang, J. Han, J. Bigalk, H. Sieme,
Factors affecting the membrane permeability barrier function
of cells during preservation technologies, Langmuir, 35 (2019)
7520–7528.
- H.H. Mantsch, R.N. McElhaney, Phospholipid phase transitions
in model and biological membranes as studied by infrared
spectroscopy, Chem. Phys. Lipids, 57 (1991) 213–226.
- T. Ding, Y. Su, Q. Xiang, X. Zhao, S. Chen, X. Ye, D. Liu,
Significance of viable but nonculturable Escherichia coli:
induction, detection, and control, J. Microbiol. Biotechnol.,
27 (2017) 417–428.
- V.V. Goncharuk, A.V. Rudenko, M.N. Saprykina, E.S. Bolgova,
Detection of microorganisms in nonculturable state in
chlorinated water, J. Water Chem. Technol., 40 (2018) 40–45.
- Y. Fu, Y. Jia, J. Fan, C. Yu, C. Yu, C. Shen, Induction of Escherichia
coli O157:H7 into a viable but non-culturable state by high
temperature and its resuscitation, Environ. Microbiol. Rep.,
12 (2020) 568–577.
- F. Zhao, X. Bi, Y. Hao, X. Liao, Induction of viable but
nonculturable Escherichia coli O157:H7 by high pressure CO2
and its characteristics, PLoS One, 8 (2013) e62388, doi: 10.1371/journal.pone.0062388.
- S. Giulitti, C. Cinquemani, A. Quaranta, S. Spilimbergo, Real
time intracellular pH dynamics in Listeria innocua under
CO2 and N2O pressure, J. Supercrit. Fluids, 58 (2011) 385–390.
- S. Giulitti, C. Cinquemani, S. Spilimbergo, High pressure gases:
role of dynamic intracellular pH in pasteurization, Biotechnol.
Bioeng., 108 (2011) 1211–1214.