References

  1. Directive 2014/24/EU of the European Parliament and of the Council of 26 February 2014 on Public Procurement and Repealing Directive 2004/18/EC Text with EEA Relevance, 2014. Available at: http://data.europa.eu/eli/dir/2014/24/oj
  2. A European Green Deal. European Commission, 2019. Available at: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
  3. Farm to Fork Strategy, for a Fair, Healthy and Environmentally- Friendly Food System, European Commission, 2022. Available at: https://ec.europa.eu/food/horizontal-topics/farmfork-strategy_en
  4. J. Racek, J. Sevcik, T. Chorazy, J. Kucerik, P. Hlavinek, Biochar – recovery material from pyrolysis of sewage sludge: a review, Waste Biomass Valorization, 11 (2020) 3677–3709.
  5. Council Directive 86/278/EEC of 12 June 1986 on the Protection of the Environment, and in Particular of the Soil, When Sewage Sludge is Used in Agriculture, 1986. Available at: http://data.europa.eu/eli/dir/1986/278/oj
  6. Ex-post Evaluation of Certain Waste Stream Directives, Final Report, European Commission – DG Environment, 2014. Available at: https://ec.europa.eu/environment/pdf/waste/ target_review/Final%20Report%20Ex-Post.pdf
  7. Communication from the Commission to the European Parliament, the Council and the European Economic and Social Committee, European Union Strategic Approach to Pharmaceuticals in the Environment, 2019. Available at: https://ec.europa.eu/environment/water/water-dangersub/pdf/ strategic_approach_pharmaceuticals_env.PDF
  8. Council Directive 91/271/EEC of 21 May 1991 Concerning Urban Waste-water Treatment, 1991. Available at: http://data. europa.eu/eli/dir/1991/271/oj
  9. EPA, Contaminants of Emerging Concern Including Pharmaceuticals and Personal Care Products, United States Environmental Protection Agency, 2008, Available at: https:// www.epa.gov/wqc/contaminants-emerging-concernincluding- pharmaceuticalsand-personal-care-products (Accessed February 2022).
  10. M. Trojanowicz, A. Bojanowska-Czajka, A.G. Capodaglio, Can radiation chemistry supply a highly efficient AO(R)P process for organics removal from drinking and wastewater? A review, Environ. Sci. Pollut. Res., 24 (2017) 20187–20208.
  11. J. Moško, M. Pohořelý, T. Cajthaml, M. Jeremiáš, A.A. Robles- Aguilar, S. Skoblia, Z. Beňo, P. Innemanová,
    L. Linhartová, K. Michalíková, E. Meers, Effect of pyrolysis temperature on removal of organic pollutants present in anaerobically stabilized sewage sludge, Chemosphere, 265 (2021) 129082, doi:10.1016/j.chemosphere.2020.129082.
  12. B.-J. Ni, Z.-R. Zhu, W.-H. Li, X. Yan, W. Wei, Q. Xu, Z. Xia, X. Dai, J. Sun, Microplastics mitigation in sewage sludge through pyrolysis: the role of pyrolysis temperature, Environ. Sci. Technol. Lett., 7 (2020) 961–967.
  13. D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU application of old and new methods—a review, Renewable Sustainable Energy Rev., 12 (2008) 116–140.
  14. B. Khiari, F. Marias, F. Zagrouba, J. Vaxelaire, Analytical study of the pyrolysis process in a wastewater treatment pilot station, Desalination, 167 (2004) 39–47.
  15. E. Cartmell, Chapter 5 – Sewage and Sewage Sludge Treatment, R.M. Harrison, Ed., Pollution: Causes, Effects and Control, 5th ed., The Royal Society of Chemistry, 2014, ISBN: 978-1-84973-648-0.
  16. P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing of sewage sludge, Appl. Therm. Eng., 26 (2006) 1420–1426.
  17. R. Cenni, B. Janisch, H. Spliethoff, K.R.G. Hein, Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material, Waste Manage., 21 (2001) 17–31.
  18. F.C. Chang, J.D. Lin, C.C. Tsai, K.S. Wang, Study on cement mortar and concrete made with sewage sludge ash, Water Sci. Technol., 62 (2010) 1689–1693.
  19. T. Liu, Z. Liu, Q. Zheng, Q. Lang, Y. Xia, N. Peng, C. Gai, Effect of hydrothermal carbonization on migration and environmental risk of heavy metals in sewage sludge during pyrolysis, Bioresour. Technol., 247 (2018) 282–290.
  20. R. Wahi, A. Idris, M.A. Mohd Salleh, K. Khalid, Low temperature microwave pyrolysis of sewage sludge, Int. J. Eng. Technol., 3 (2006).
  21. Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin, Y. Liu, P. Chen, R. Ruan, Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production, Bioresour. Technol., 172 (2014) 162–168.
  22. Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai, J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Total Environ., 473–474 (2014) 619–641.
  23. S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastic particles in wastewater treatment plants, Water Res., 91 (2016) 174–182.
  24. S. Daneshgar, A. Callegari, A.G. Capodaglio, D. Vaccari, The potential phosphorus crisis: resource conservation and possible escape technologies: a review, Resources, 7 (2018) 37, doi: 10.3390/resources7020037.
  25. IBI, Standardized Product Definition and Product Testing Guidelines for Biochar That Is Used in Soil, Product Definition and Specification Standards, International Biochar Initiative, 2015.
  26. EBC, Guidelines for a Sustainable Production of Biochar, European Biochar Foundation (EBC), European Biochar Certificate, Arbaz, Switzerland, 2022. Available at: https:// www.european-biochar.org/media/doc/2/version_en_10_1.pdf. Version 10.1E of 10th January 2022.
  27. S. Bolognesi, G. Bernardi, A. Callegari, D. Dondi, A.G. Capodaglio, Biochar production from sewage sludge and microalgae mixtures: properties, sustainability and possible role in circular economy, Biomass Convers. Biorefin., 11 (2021) 289–299.
  28. A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of energy (biodiesel) and recovery of materials (biochar) from pyrolysis of urban waste sludge, Rev. Ambient. Água, 13 (2018), doi: 10.4136/ambi-agua.2128.
  29. R. Šejvl, Energy Gasification and Its Way to Higher Efficiency and Energy Recovery of Waste, Technical Systems Usable for Energy Waste Utilization, Overview of Development Trends Their Way to Achieving Higher Energy Efficiency, EFEKT, 2009. Available at: https://www.mpo-efekt.cz/ upload/7799f3fd595eeee1fa66875530f33e8a/Publikace_ Technicke_systemy_pro_EVO_2009.pdf
  30. H.S. Kambo, A. Dutta, A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications, Renewable Sustainable Energy Rev., 45 (2015), doi:10.1016/j.rser.2015.01.050.
  31. A. Pimchuai, A. Dutta, P. Basu, Torrefaction of agriculture residue to enhance combustible properties, Energy Fuels, 24 (2010) 4638–4645.
  32. P. Rousset, L. Macedo, J.-M. Commandré, A. Moreira, Biomass torrefaction under different oxygen concentrations and its effect on the composition of the solid by-product, J. Anal. Appl. Pyrolysis, 96 (2012) 86–91.
  33. M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski, Biomass upgrading by torrefaction for the production of biofuels: a review, Biomass Bioenergy, 35 (2011) 3748–3762.
  34. J.E. Amonette, S. Joseph, Characteristics of Biochar: Microchemical Properties, J. Lehmann, S. Joseph, Eds., Biochar for Environmental Management: Science and Technology, MPG Books, UK, 2009.
  35. J. Racek, J. Sevcik, R. Komendova, J. Kucerik, P. Hlavinek, Heavy metal fixation in biochar after microwave pyrolysis of sewage sludge, Desal. Water Treat., 159 (2019) 79–92.
  36. J. Ševčík, J. Raček, P. Hluštík, P. Hlavínek, K. Dvořák, Microwave pyrolysis full-scale application on sewage sludge, Desal. Water Treat., 112 (2018) 161–170.
  37. M. Vollmer, Physics of the microwave oven, Phys. Educ., 39 (2004) 74–81.
  38. D. Huygens, H. Saveyn, P. Eder, L.D. Sancho, DRAFT Nutrient Recovery Rules for Recovered Phosphate Salts, Ash-Based Materials and Pyrolysis Materials in View of Their Possible Inclusion as Component Material Categories in the Revised Fertiliser Regulation, JRC Interim Report, 148 pages. Available at: http://susproc.jrc.ec.europa.eu/activities/waste/documents/JRC_Interim_Report_STRUBIAS_recovery_rules.pdf
  39. J. Raček, A.G. Capodaglio, J. Ševčík, T. Chorazy, P. Hlavínek, Microwave Pyrolysis Treatment of Sewage Sludge: Performed at Laboratory and Full-Scale Conditions, 17th International Multidisciplinary Scientific Geoconference SGEM 2017. International Multidisciplinary Geoconference SGEM, SGEM, Bulgaria, 2017, pp. 107–114.
  40. Czech Standard No. EN ISO 1716, Reaction to Fire Tests for Products – Determination of the Gross Heat of Combustion (Calorific Value), Office for Technical Standardization, Published by Metrology and State Testing – The Czech Republic, 2018.
  41. E. Antunes, J. Schumann, G. Brodie, V.J. Mohan, P.A. Schneider, Biochar produced from biosolids using a single-mode microwave: characterization and its potential for phosphorus removal, J. Environ. Manage., 196 (2017) 119–126.
  42. Decree on the Use of Sewage Sludge from Wastewater Treatment Plant, Sewage Sludge Mixtures and Sewage Sludge Compost from Sewage Treatment Plants (Sewage Sludge Control – AbfKlärV), 2017. Available at: https://www.gesetze-im-internet. de/abfkl_rv_2017/BJNR346510017.html (Accessed 30 August 2018).
  43. Federal Waste Management Plan (Bundes- Abfallwirtschaftsplan), Bundesministerium, Nachhaltigkeit und Tourismus, 2018. Available at: https://www.bmnt.gv.at/ umwelt/abfall-ressourcen/bundes-abfallwirtschaftsplan.html (Accessed 30 August 2018).
  44. R.C. Kistler, F. Widmer, P.H. Brunner, Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during pyrolysis of sewage sludge, Environ. Sci. Technol., 21 (1987) 704–708.