References
- Directive 2014/24/EU of the European Parliament and of
the Council of 26 February 2014 on Public Procurement and
Repealing Directive 2004/18/EC Text with EEA Relevance,
2014. Available at: http://data.europa.eu/eli/dir/2014/24/oj
- A European Green Deal. European Commission, 2019. Available
at: https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
- Farm to Fork Strategy, for a Fair, Healthy and Environmentally-
Friendly Food System, European Commission, 2022.
Available at: https://ec.europa.eu/food/horizontal-topics/farmfork-strategy_en
- J. Racek, J. Sevcik, T. Chorazy, J. Kucerik, P. Hlavinek, Biochar
– recovery material from pyrolysis of sewage sludge: a review,
Waste Biomass Valorization, 11 (2020) 3677–3709.
- Council Directive 86/278/EEC of 12 June 1986 on the Protection
of the Environment, and in Particular of the Soil, When Sewage
Sludge is Used in Agriculture, 1986. Available at: http://data.europa.eu/eli/dir/1986/278/oj
- Ex-post Evaluation of Certain Waste Stream Directives, Final
Report, European Commission – DG Environment, 2014.
Available at: https://ec.europa.eu/environment/pdf/waste/
target_review/Final%20Report%20Ex-Post.pdf
- Communication from the Commission to the European
Parliament, the Council and the European Economic and
Social Committee, European Union Strategic Approach to
Pharmaceuticals in the Environment, 2019. Available at:
https://ec.europa.eu/environment/water/water-dangersub/pdf/
strategic_approach_pharmaceuticals_env.PDF
- Council Directive 91/271/EEC of 21 May 1991 Concerning
Urban Waste-water Treatment, 1991. Available at: http://data.
europa.eu/eli/dir/1991/271/oj
- EPA, Contaminants of Emerging Concern Including
Pharmaceuticals and Personal Care Products, United States
Environmental Protection Agency, 2008, Available at: https://
www.epa.gov/wqc/contaminants-emerging-concernincluding-
pharmaceuticalsand-personal-care-products
(Accessed February 2022).
- M. Trojanowicz, A. Bojanowska-Czajka, A.G. Capodaglio, Can
radiation chemistry supply a highly efficient AO(R)P process
for organics removal from drinking and wastewater? A review,
Environ. Sci. Pollut. Res., 24 (2017) 20187–20208.
- J. Moško, M. Pohořelý, T. Cajthaml, M. Jeremiáš, A.A. Robles-
Aguilar, S. Skoblia, Z. Beňo, P. Innemanová,
L. Linhartová,
K. Michalíková, E. Meers, Effect of pyrolysis temperature
on removal of organic pollutants present in anaerobically
stabilized sewage sludge, Chemosphere, 265 (2021) 129082,
doi:10.1016/j.chemosphere.2020.129082.
- B.-J. Ni, Z.-R. Zhu, W.-H. Li, X. Yan, W. Wei, Q. Xu, Z. Xia,
X. Dai, J. Sun, Microplastics mitigation in sewage sludge
through pyrolysis: the role of pyrolysis temperature, Environ.
Sci. Technol. Lett., 7 (2020) 961–967.
- D. Fytili, A. Zabaniotou, Utilization of sewage sludge in EU
application of old and new methods—a review, Renewable
Sustainable Energy Rev., 12 (2008) 116–140.
- B. Khiari, F. Marias, F. Zagrouba, J. Vaxelaire, Analytical study
of the pyrolysis process in a wastewater treatment pilot station,
Desalination, 167 (2004) 39–47.
- E. Cartmell, Chapter 5 – Sewage and Sewage Sludge
Treatment, R.M. Harrison, Ed., Pollution: Causes, Effects
and Control, 5th ed., The Royal Society of Chemistry, 2014,
ISBN: 978-1-84973-648-0.
- P. Stasta, J. Boran, L. Bebar, P. Stehlik, J. Oral, Thermal processing
of sewage sludge, Appl. Therm. Eng., 26 (2006) 1420–1426.
- R. Cenni, B. Janisch, H. Spliethoff, K.R.G. Hein, Legislative and
environmental issues on the use of ash from coal and municipal
sewage sludge co-firing as construction material, Waste
Manage., 21 (2001) 17–31.
- F.C. Chang, J.D. Lin, C.C. Tsai, K.S. Wang, Study on cement
mortar and concrete made with sewage sludge ash, Water Sci.
Technol., 62 (2010) 1689–1693.
- T. Liu, Z. Liu, Q. Zheng, Q. Lang, Y. Xia, N. Peng, C. Gai, Effect
of hydrothermal carbonization on migration and environmental
risk of heavy metals in sewage sludge during pyrolysis,
Bioresour. Technol., 247 (2018) 282–290.
- R. Wahi, A. Idris, M.A. Mohd Salleh, K. Khalid, Low temperature
microwave pyrolysis of sewage sludge, Int. J. Eng. Technol.,
3 (2006).
- Q. Xie, P. Peng, S. Liu, M. Min, Y. Cheng, Y. Wan, Y. Li, X. Lin,
Y. Liu, P. Chen, R. Ruan, Fast microwave-assisted catalytic
pyrolysis of sewage sludge for bio-oil production, Bioresour.
Technol., 172 (2014) 162–168.
- Y. Luo, W. Guo, H.H. Ngo, L.D. Nghiem, F.I. Hai,
J. Zhang, S. Liang, X.C. Wang, A review on the occurrence of
micropollutants in the aquatic environment and their fate and
removal during wastewater treatment, Sci. Total Environ.,
473–474 (2014) 619–641.
- S.A. Carr, J. Liu, A.G. Tesoro, Transport and fate of microplastic
particles in wastewater treatment plants, Water Res., 91 (2016)
174–182.
- S. Daneshgar, A. Callegari, A.G. Capodaglio, D. Vaccari,
The potential phosphorus crisis: resource conservation and
possible escape technologies: a review, Resources, 7 (2018) 37,
doi: 10.3390/resources7020037.
- IBI, Standardized Product Definition and Product Testing
Guidelines for Biochar That Is Used in Soil, Product Definition
and Specification Standards, International Biochar Initiative,
2015.
- EBC, Guidelines for a Sustainable Production of Biochar,
European Biochar Foundation (EBC), European Biochar
Certificate, Arbaz, Switzerland, 2022. Available at: https://
www.european-biochar.org/media/doc/2/version_en_10_1.pdf.
Version 10.1E of 10th January 2022.
- S. Bolognesi, G. Bernardi, A. Callegari, D. Dondi,
A.G. Capodaglio, Biochar production from sewage sludge and
microalgae mixtures: properties, sustainability and possible
role in circular economy, Biomass Convers. Biorefin., 11 (2021)
289–299.
- A. Callegari, P. Hlavinek, A.G. Capodaglio, Production of
energy (biodiesel) and recovery of materials (biochar) from
pyrolysis of urban waste sludge, Rev. Ambient. Água, 13 (2018),
doi: 10.4136/ambi-agua.2128.
- R. Šejvl, Energy Gasification and Its Way to Higher Efficiency
and Energy Recovery of Waste, Technical Systems Usable
for Energy Waste Utilization, Overview of Development
Trends Their Way to Achieving Higher Energy Efficiency,
EFEKT, 2009. Available at: https://www.mpo-efekt.cz/
upload/7799f3fd595eeee1fa66875530f33e8a/Publikace_
Technicke_systemy_pro_EVO_2009.pdf
- H.S. Kambo, A. Dutta, A comparative review of biochar and
hydrochar in terms of production, physico-chemical properties
and applications, Renewable Sustainable Energy Rev., 45 (2015),
doi:10.1016/j.rser.2015.01.050.
- A. Pimchuai, A. Dutta, P. Basu, Torrefaction of agriculture
residue to enhance combustible properties, Energy Fuels,
24 (2010) 4638–4645.
- P. Rousset, L. Macedo, J.-M. Commandré, A. Moreira, Biomass
torrefaction under different oxygen concentrations and its
effect on the composition of the solid by-product, J. Anal. Appl.
Pyrolysis, 96 (2012) 86–91.
- M.J.C. van der Stelt, H. Gerhauser, J.H.A. Kiel, K.J. Ptasinski,
Biomass upgrading by torrefaction for the production of
biofuels: a review, Biomass Bioenergy, 35 (2011) 3748–3762.
- J.E. Amonette, S. Joseph, Characteristics of Biochar:
Microchemical Properties, J. Lehmann, S. Joseph, Eds., Biochar
for Environmental Management: Science and Technology,
MPG Books, UK, 2009.
- J. Racek, J. Sevcik, R. Komendova, J. Kucerik, P. Hlavinek,
Heavy metal fixation in biochar after microwave pyrolysis of
sewage sludge, Desal. Water Treat., 159 (2019) 79–92.
- J. Ševčík, J. Raček, P. Hluštík, P. Hlavínek, K. Dvořák, Microwave
pyrolysis full-scale application on sewage sludge, Desal. Water
Treat., 112 (2018) 161–170.
- M. Vollmer, Physics of the microwave oven, Phys. Educ.,
39 (2004) 74–81.
- D. Huygens, H. Saveyn, P. Eder, L.D. Sancho, DRAFT Nutrient
Recovery Rules for Recovered Phosphate Salts, Ash-Based
Materials and Pyrolysis Materials in View of Their Possible
Inclusion as Component Material Categories in the Revised
Fertiliser Regulation, JRC Interim Report, 148 pages. Available
at: http://susproc.jrc.ec.europa.eu/activities/waste/documents/JRC_Interim_Report_STRUBIAS_recovery_rules.pdf
- J. Raček, A.G. Capodaglio, J. Ševčík, T. Chorazy, P. Hlavínek,
Microwave Pyrolysis Treatment of Sewage Sludge: Performed
at Laboratory and Full-Scale Conditions, 17th International
Multidisciplinary Scientific Geoconference SGEM 2017.
International Multidisciplinary Geoconference SGEM, SGEM,
Bulgaria, 2017, pp. 107–114.
- Czech Standard No. EN ISO 1716, Reaction to Fire Tests for
Products – Determination of the Gross Heat of Combustion
(Calorific Value), Office for Technical Standardization,
Published by Metrology and State Testing – The Czech Republic,
2018.
- E. Antunes, J. Schumann, G. Brodie, V.J. Mohan, P.A. Schneider,
Biochar produced from biosolids using a single-mode
microwave: characterization and its potential for phosphorus
removal, J. Environ. Manage., 196 (2017) 119–126.
- Decree on the Use of Sewage Sludge from Wastewater Treatment
Plant, Sewage Sludge Mixtures and Sewage Sludge Compost
from Sewage Treatment Plants (Sewage Sludge Control –
AbfKlärV), 2017. Available at: https://www.gesetze-im-internet.
de/abfkl_rv_2017/BJNR346510017.html (Accessed 30 August
2018).
- Federal Waste Management Plan (Bundes-
Abfallwirtschaftsplan), Bundesministerium, Nachhaltigkeit
und Tourismus, 2018. Available at: https://www.bmnt.gv.at/
umwelt/abfall-ressourcen/bundes-abfallwirtschaftsplan.html
(Accessed 30 August 2018).
- R.C. Kistler, F. Widmer, P.H. Brunner, Behavior of chromium,
nickel, copper, zinc, cadmium, mercury, and lead during
pyrolysis of sewage sludge, Environ. Sci. Technol., 21 (1987)
704–708.