References

  1. D.C. Crans, J.J. Smee, E. Gaidamauskas, L. Yang, The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds, Chem. Rev., 104 (2004) 849–902.
  2. D.M. Manohar, B.F. Noeline, T.S. Anirudhan, Removal of vanadium(IV) from aqueous solutions by adsorption process with aluminum-pillared bentonite, Ind. Eng. Chem. Res., 44 (2005) 6676–6684.
  3. M. Poorbaba, M. Soleimani, Single and competitive adsorption of V-EDTA and Ni-EDTA complexes onto activated carbon: response surface optimization, kinetic, equilibrium, and thermodynamic studies, Desal. Water Treat., 212 (2021) 185–203.
  4. R. Moskalyk, A. Alfantazi, Processing of vanadium: a review, Miner. Eng., 16 (2003) 793–805.
  5. T. Anirudhan, P. Radhakrishnan, Adsorptive performance of an amine-functionalized poly(hydroxyethylmethacrylate)-grafted tamarind fruit shell for vanadium(V) removal from aqueous solutions, Chem. Eng. J., 165 (2010) 142–150.
  6. N. Kocak, M. Sahin, I.H. Gubbuk, Synthesized of sporopolleninimmobilized Schiff bases and their vanadium(IV) sorption studies, J. Inorg. Organomet. Polym. Mater., 22 (2012) 852–859.
  7. H. Sharififard, M. Soleimani, Performance comparison of activated carbon and ferric oxide-hydroxide–activated carbon nanocomposite as vanadium(V) ion adsorbents, RSC Adv., 5 (2015) 80650–80660.
  8. M. Poorbaba, M. Soleimani, Recovery of vanadium-EDTA complex from extraction leachate of vanadium secondary resources: optimization and experimental investigation, Desal. Water Treat., 101 (2018) 268–282.
  9. A. Padilla-Rodríguez, J.A. Hernández-Viezcas, J.R. Peralta-Videa, J.L. Gardea-Torresdey, O. Perales-Pérez,
    F.R. Román-Velázquez, Synthesis of protonated chitosan flakes for the removal of vanadium(III, IV and V) oxyanions from aqueous solutions, Microchem. J., 118 (2015) 1–11.
  10. A. Bhatnagar, A. Kumar Minocha, D. Pudasainee, H. Chung, S. Kim, H. Kim, G. Lee, B. Min, B. Jeon, Vanadium removal from water by waste metal sludge and cement immobilization, Chem. Eng. J., 144 (2008) 197–204.
  11. J. Hu, X. Wang, L. Xiao, S. Song, B. Zhang, Removal of vanadium from molybdate solution by ion exchange, Hydrometallurgy, 95 (2009) 203–206.
  12. Z.-r. Liu, S. Zhou, Adsorption of copper and nickel on Na-bentonite, Process Saf. Environ. Prot., 88 (2010) 62–66.
  13. H. Sharififard, M. Soleimani, F. Zokaee Ashtiani, Application of nanoscale iron oxide-hydroxide-impregnated activated carbon (Fe-AC) as an adsorbent for vanadium recovery from aqueous solutions, Desal. Water Treat., 57 (2016) 15714–15723.
  14. R.E. Grim, Applied Clay Mineralogy, McGraw-Hill, New York, 1962.
  15. S. Babel, T.A. Kurniawan, Low-cost adsorbents for heavy metals uptake from contaminated water: a review,
    J. Hazard. Mater., 97 (2003) 219–243.
  16. Y. Min, Y. Zhou, M. Zhang, H. Qiao, Q. Huang, T. Ma, Removal of ionic liquid by engineered bentonite from aqueous solution, J. Taiwan Inst. Chem. Eng., 53 (2015) 153–159.
  17. M. Mercurio, B. Sarkar, A. Langella, Modified Clay and Zeolite Nanocomposite Materials Environmental and Pharmaceutical Applications, Elsevier, 2019, pp.113–127.
  18. G. Brauer, Handbook of Preparative Inorganic Chemistry V2, Academic Press Inc., London, 1963.
  19. S. Mirmohamadsadeghi, T. Kaghazchi, M. Soleimani, N. Asasian, An efficient method for clay modification and its application for phenol removal from wastewater, Appl. Clay Sci., 59 (2012) 8–12.
  20. F. Bergaya, G. Lagaly, Handbook of Clay Science, Elsevier Newnes, 2013.
  21. A. Rahmani, G.R. Karimi, M. Hosseini, Removal/separation of Co(II) ion from environmental sample solutions by MnFe2O4/bentonite nanocomposite as a magnetic nanomaterial, Desal. Water Treat., 89 (2017) 250–257.
  22. D. Xu, X. Zhou, X. Wang, Adsorption and desorption of Ni2+ on Na-montmorillonite: effect of pH, ionic strength, fulvic acid, humic acid and addition sequences, Appl. Clay Sci., 39 (2008) 133–141.
  23. M. Al-Qunaibit, W. Mekhemer, A. Zaghloul, The adsorption of Cu(II) ions on bentonite—a kinetic study,
    J. Colloid Interface Sci., 283 (2005) 316–321.
  24. N. Cavallaro, M. McBride, Copper and cadmium adsorption characteristics of selected acid and calcareous soils, Soil Sci. Soc. Am. J., 42 (1978) 550–556.
  25. S. Mishra, Adsorption–desorption of heavy metal ions, Curr. Sci., 2014 601–612.
  26. O. Korkut, E. Sayan, O. Lacin, B. Bayrak, Investigation of adsorption and ultrasound assisted desorption of lead(II) and copper(II) on local bentonite: a modelling study, Desalination, 259 (2010) 243–248.
  27. T. Undabeytia, S. Nir, G. Rytwo, C. Serban, E. Morillo, C. Maqueda, Modeling adsorption−desorption processes of cu on edge and planar sites of montmorillonite, Environ. Sci. Technol., 36 (2002) 2677–2683.
  28. X. Peng, Z. Luan, H. Zhang, Montmorillonite–Cu(II)/Fe(III) oxides magnetic material as adsorbent for removal of humic acid and its thermal regeneration, Chemosphere, 63 (2006) 300–306.
  29. R. Antonelli, G.R.P. Malpass, M.G.C. da Silva, M.G.A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8 (2020) 104553, doi: 10.1016/j.jece.2020.104553.
  30. F. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut., 107 (2000) 391–398.
  31. A.A. Moosa, A.M. Ridha, I.N. Abdullha, Chromium ions removal from wastewater using activated Iraqi Bentonite, Int. J. Innov. Res. Sci. Eng. Technol., 4 (2015) 15–25.
  32. E. Eren, B. Afsin, An investigation of Cu(II) adsorption by raw and acid-activated bentonite: a combined potentiometric, thermodynamic, XRD, IR, DTA study, J. Hazard. Mater., 151 (2008) 682–691.
  33. F.D. Snell, C.L. Hilton, L.S. Ettre, Encyclopedia of Industrial Chemical Analysis, Interscience Publishers, New York, 1966.
  34. E. Taiwan, Cation Exchange Capacity of Soils, Method NIEA. S., 202 (1994) 60A.
  35. S.A. Dastgheib, D.A. Rockstraw, A model for the adsorption of single metal ion solutes in aqueous solution onto activated carbon produced from pecan shells, Carbon, 40 (2002) 1843–1851.
  36. D.C. Montgomery, Design and Analysis of Experiments, John Wiley & Sons Inc., New York, NY, 2012.
  37. M.J. Bashir, H.A. Aziz, M.S. Yusoff, M.N. Adlan, Application of response surface methodology (RSM) for optimization of ammoniacal nitrogen removal from semi-aerobic landfill leachate using ion exchange resin, Desalination, 254 (2010) 154–161.
  38. A. Etaati, M. Soleimani, Optimizing of vanadium adsorption onto natural bentonite using response surface methodology, Int. J. Chem. Environ. Eng., 6 (2015) 357–361.
  39. J. Madejová, J. Bujdák, M. Janek, P. Komadel, Comparative FTIR study of structural modifications during acid treatment of dioctahedral smectites and hectorite, Spectrochim. Acta, Part A, 54 (1998) 1397–1406.
  40. S. Yang, D. Zhao, H. Zhang, S. Lu, L. Chen, X. Yu, Impact of environmental conditions on the sorption behavior of Pb(II) in Na-bentonite suspensions, J. Hazard. Mater., 183 (2010) 632–640.
  41. A.S. Özcan, A. Özcan, Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite, J. Colloid Interface Sci., 276 (2004) 39–46.
  42. F. Ayari, E. Srasra, M. Trabelsi-Ayadi, Characterization of bentonitic clays and their use as adsorbent, Desalination, 185 (2005) 391–397.
  43. L. Yaming, B. Mingliang, W. Zhipeng, L. Run, S. Keliang, W. Wangsuo, Organic modification of bentonite and its application for perrhenate (an analogue of pertechnetate) removal from aqueous solution, J. Taiwan Inst. Chem. Eng., 62 (2016) 104–111.
  44. N. Mehrabi, M. Soleimani, M.M. Yeganeh, H. Sharififard, Parameter optimization for nitrate removal from water using activated carbon and composite of activated carbon and Fe2O3 nanoparticles, RSC Adv., 5 (2015) 51470–51482.
  45. M.R. Hormozi-Nezhad, H. Robatjazi, M. Jalali-Heravi, Thorough tuning of the aspect ratio of gold nanorods using response surface methodology, Anal. Chim. Acta, 779 (2013) 14–21.
  46. M. Mourabet, A. El Rhilassi, H. El Boujaady, M. Bennani-Ziatni, A. Taitai, Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite, Arabian J. Chem., 10 (2017) S3292-S3302.
  47. P. Sudamalla, P. Saravanan, M. Matheswaran, Optimization of operating parameters using response surface methodology for adsorption of crystal violet by activated carbon prepared from mango kernel, Sustainable Environ. Res., 22 (2012) 1–7.
  48. B. Das, N.K. Mondal, P. Roy, S. Chattoraj, Application of response surface methodology for hexavalent chromium adsorption onto alluvial soil of Indian origin, Int. J. Environ. Pollut., 2 (2013) 72–87.
  49. V. Vimonses, S. Lei, B. Jin, C.W. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials, Chem. Eng. J., 148 (2009) 354–364.
  50. M.A. Tabatabai, D.L. Sparks, L. Al-Amoodi, W. Dick, Chemical Processes in Soils, Soil Science Society of America Inc., 2005.
  51. K.G. Akpomie, F.A. Dawodu, Potential of a low-cost bentonite for heavy metal abstraction from binary component system, J. Assoc. Arab. Univ. Basic Appl. Sci., 4 (2015) 1–13.
  52. H. Qiu, L. Lv, B.-c. Pan, Q.-j. Zhang, W.-m. Zhang, Q.-x. Zhang, Critical review in adsorption kinetic models,
    J. Zhejiang Univ. Sci., A, 10 (2009) 716–724.
  53. N. Mehrabi, M. Soleimani, H. Sharififard, M. Madadi Yeganeh, Optimization of phosphate removal from drinking water with activated carbon using response surface methodology (RSM), Desal. Water Treat., 57 (2016) 15613–15618.
  54. B.H. Hameed, A.A. Ahmad, Batch adsorption of methylene blue from aqueous solution by garlic peel, an agricultural waste biomass, J. Hazard. Mater., 164 (2009) 870–875.