References

  1. K.S. Suh, E.M. Choi, Y.J. Kim, S.M. Hong, S.Y. Park, S.Y. Rhee, S. Oh, S.W. Kim, Y.K. Pak, W. Choe, S. Chon, Perfluorooctanoic acid induces oxidative damage and mitochondrial dysfunction in pancreatic β-cells, Mol. Med. Rep., 15 (2017) 3871–3878.
  2. D. Zhang, Q. Luo, B. Gao, S.-Y.D. Chiang, D. Woodward, Q. Huang, Sorption of perfluorooctanoic acid, perfluorooctane sulfonate and perfluoroheptanoic acid on granular activated carbon, Chemosphere, 144 (2016) 2336–2342.
  3. J.-N. Uwayezu, L.W.Y. Yeung, M. Bäckström, Sorption of PFOS isomers on goethite as a function of pH, dissolved organic matter (humic and fulvic acid) and sulfate, Chemosphere, 233 (2019) 896–904.
  4. S. Rayne, K. Forest, Perfluoroalkyl sulfonic and carboxylic acids: a critical review of physicochemical properties, levels and patterns in waters and wastewaters, and treatment methods, J. Environ. Sci. Health., Part A, Environ. Sci. Eng., 44 (2009) 1145–1199.
  5. X.-T. Chen, P.-F. Yu, L. Xiang, H.-M. Zhao, Y.-W. Li, H. Li, X.-Y. Zhang, Q.-Y. Cai, C.-H. Mo, M.H. Wong, Dynamics, thermodynamics, and mechanism of perfluorooctane sulfonate (PFOS) sorption to various soil particle-size fractions of paddy soil, Ecotoxicol. Environ. Saf., 206 (2020) 111105, doi: 10.1016/j.ecoenv.2020.111105.
  6. S. Deng, L. Niu, Y. Bei, B. Wang, J. Huang, G. Yu, Adsorption of perfluorinated compounds on aminated rice husk prepared by atom transfer radical polymerization, Chemosphere, 91 (2013) 124–130.
  7. C.Y. Tang, Q.S. Fu, A.P. Robertson, C.S. Criddle, J.O. Leckie, Use of reverse osmosis membranes to remove perfluorooctane sulfonate (PFOS) from semiconductor wastewater, Environ. Sci. Technol., 40 (2006) 7343–7349.
  8. M. Trojanowicz, A. Bojanowska-Czajka, I. Bartosiewicz, K. Kulisa, Advanced oxidation/reduction processes treatment for aqueous perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) – a review of recent advances, Chem. Eng. J., 336 (2018) 170–199.
  9. A. Santos, S. Rodríguez, F. Pardo, A. Romero, Use of Fenton reagent combined with humic acids for the removal of PFOA from contaminated water, Sci. Total Environ., 563–564 (2016) 657–663.
  10. B.O. Fagbayigbo, B.O. Opeolu, O.S. Fatoki, T.A. Akenga, O.S. Olatunji, Removal of PFOA and PFOS from aqueous solutions using activated carbon produced from Vitis vinifera leaf litter, Environ. Sci. Pollut. Res., 24 (2017) 13107–13120.
  11. X. Chen, X. Xia, X. Wang, J. Qiao, H. Chen, A comparative study on sorption of perfluorooctane sulfonate (PFOS) by chars, ash and carbon nanotubes, Chemosphere, 83 (2011) 1313–1319.
  12. W. Wang, Z. Du, S. Deng, M. Vakili, L. Ren, P. Meng, A. Maimaiti, B. Wang, J. Huang, Y. Wang, G. Yu, Regeneration of PFOS loaded activated carbon by hot water and subsequent aeration enrichment of PFOS from eluent, Carbon, 134 (2018) 199–206.
  13. S. Deng, Q. Zhang, Y. Nie, H. Wei, B. Wang, J. Huang, G. Yu, B. Xing, Sorption mechanisms of perfluorinated compounds on carbon nanotubes, Environ. Pollut., 168 (2012) 138–144.
  14. C. Xu, H. Chen, F. Jiang, Adsorption of perflourooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) on polyaniline nanotubes, Colloids Surf., A, 479 (2015) 60–67.
  15. Y. Gao, S. Deng, Z. Du, K. Liu, G. Yu, Adsorptive removal of emerging polyfluoroalky substances F-53B and PFOS by anion-exchange resin: a comparative study, J. Hazard. Mater., 323 (2017) 550–557.
  16. F. Wang, C. Liu, K. Shih, Adsorption behavior of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on boehmite, Chemosphere, 89 (2012) 1009–1014.
  17. T. Feng, T. Yi, Q.B. Wang, P.W. Li, Shrimp shells-derived biochar for efficient adsorption of Pb2+ in aqueous solutions, Desal. Water Treat., 233 (2021) 106–117.
  18. J.M. Koroma, K.B. Pu, H. Zhang, J.R. Bai, M.S. Almouctar, Y.H. Wang, Methylene blue adsorption on Parinari excelsa biochar in aqueous solution, Desal. Water Treat., 233 (2021) 351–360.
  19. S. Chen, T. Wang, C. Chen, J.X. Liu, M. Mei, J.P. Xie, J.P. Li, Study on adsorption of Direct Red 23 by biochar derived from co-pyrolysis of sewage sludge and rice husk waste: optimization, isotherm, kinetic, thermodynamic and mechanisms, Desal. Water Treat., 221 (2021) 378–395.
  20. C. Gu, K.G. Karthikeyan, Interaction of tetracycline with aluminum and iron hydrous oxides, Environ. Sci. Technol., 39 (2005) 2660–2667.
  21. Z. Wang, Y. Lin, D. Wu, H. Kong, Hydrous iron oxide modified diatomite as an active filtration medium for phosphate capture, Chemosphere, 144 (2016) 1290–1298.
  22. L. Boukemara, C. Boukhalfa, Phosphate removal from aqueous solution by hydrous iron oxide freshly prepared effects of pH, iron concentration and competitive ions, Procedia Eng., 33 (2012) 163–167.
  23. J. Majzlan, Thermodynamic stabilization of hydrous ferric oxide by adsorption of phosphate and arsenate, Environ. Sci. Technol., 45 (2011) 4726–4732.
  24. X. Wu, M. Huang, T. Zhou, J. Mao, Recognizing removal of norfloxacin by novel magnetic molecular imprinted chitosan/γ-Fe2O3 composites: selective adsorption mechanisms, practical application and regeneration, Sep. Purif. Technol., 165 (2016) 92–100.
  25. R. Huang, Q. Liu, J. Huo, B. Yang, Adsorption of methyl orange onto protonated cross-linked chitosan, Arabian J. Chem., 10 (2017) 24–32.
  26. B. Tanhaei, A. Ayati, M. Lahtinen, M. Sillanpää, Preparation and characterization of a novel
    chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of Methyl orange adsorption, Chem. Eng. J., 259 (2015) 1–10.
  27. U. Habiba, A.M. Afifi, A. Salleh, B.C. Ang, Chitosan/(polyvinyl alcohol)/zeolite electrospun composite nanofibrous membrane for adsorption of Cr6+, Fe3+ and Ni2+, J. Hazard. Mater., 322 (2017) 182–194.
  28. P.S. Bakshi, D. Selvakumar, K. Kadirvelu, N.S. Kumar, Chitosan as an environment friendly biomaterial – a review on recent modifications and applications, Int. J. Biol. Macromol., 150 (2020) 1072–1083.
  29. T.A. Saleh, A. Sarı, M. Tuzen, Chitosan-modified vermiculite for As(III) adsorption from aqueous solution: equilibrium, thermodynamic and kinetic studies, J. Mol. Liq., 219 (2016) 937–945.
  30. N. Caner, A. Sarı, M. Tüzen, Adsorption characteristics of mercury(II) ions from aqueous solution onto chitosan-coated diatomite, Ind. Eng. Chem. Res., 54 (2015) 7524–7533.
  31. X. Liu, L. Zhang, Removal of phosphate anions using the modified chitosan beads: adsorption kinetic, isotherm and mechanism studies, Powder Technol., 277 (2015) 112–119.
  32. A.H. Jawad, I.A. Mohammed, A.S. Abdulhameed, Tuning of fly ash loading into chitosan-ethylene glycol diglycidyl ether composite for enhanced removal of Reactive Red 120 dye: optimization using the Box–Behnken design, J. Polym. Environ., 28 (2020) 2720–2733.
  33. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, A.A. Al-Kahtani, Z.A. Alothman, Parametric optimization by Box–Behnken design for synthesis of magnetic chitosan-benzil/ZnO/Fe3O4 nanocomposite and textile dye removal, J. Environ. Chem. Eng., 9 (2021) 105166, doi: 10.1016/j.jece.2021.105166.
  34. A.S. Abdulhameed, A.T. Mohammad, A.H. Jawad, Modeling and mechanism of Reactive orange 16 dye adsorption by chitosan-glyoxal/TiO2 nanocomposite: application of response surface methodology, Desal. Water Treat., 164 (2019) 346–360.
  35. Y.G. Abou El-Reash, M. Otto, I.M. Kenawy, A.M. Ouf, Adsorption of Cr(VI) and As(V) ions by modified magnetic chitosan chelating resin, Int. J. Biol. Macromol., 49 (2011) 513–522.
  36. S.K. Lagergren, About the theory of so-called adsorption of soluble substances, Sven. Vetenskapsakad. Handingarl, 24 (1898) 1–39.
  37. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res., 18 (1984) 1501–1507.
  38. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  39. H. Freundlich, Über die adsorption in lösungen, Zeitschrift für physikalische Chemie, 57 (1907) 385–470.
  40. W. Phasuphan, N. Praphairaksit, A. Imyim, Removal of ibuprofen, diclofenac, and naproxen from water using chitosanmodified waste tire crumb rubber, J. Mol. Liq., 294 (2019) 111554, doi:10.1016/j.molliq.2019.111554.
  41. A. Reghioua, D. Barkat, A.H. Jawad, A.S. Abdulhameed, S. Rangabhashiyam, M.R. Khan, Z.A. Alothman, Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: optimization and adsorptive mechanism of Remazol Brilliant Blue R dye removal, J. Polym. Environ., 29 (2021) 3932–3947.
  42. S. Subramaniam, K.Y. Foo, E.N. Md Yusof, A.H. Jawad, L.D. Wilson, S. Sabar, Hydrothermal synthesis of phosphorylated chitosan and its adsorption performance towards Acid Red 88 dye, Int. J. Biol. Macromol., 193 (2021) 1716–1726.
  43. A. Hofmann, M. Pelletier, L. Michot, A. Stradner, P. Schurtenberger, R. Kretzschmar, Characterization of the pores in hydrous ferric oxide aggregates formed by freezing and thawing, J. Colloid Interface Sci., 271 (2004) 163–173.
  44. H. Yan, H. Yang, A. Li, R. Cheng, pH-tunable surface charge of chitosan/graphene oxide composite adsorbent for efficient removal of multiple pollutants from water, Chem. Eng. J., 284 (2016) 1397–1405.
  45. Z. Khan, Chitosan capped Au@Pd@Ag trimetallic nanoparticles: synthesis, stability, capping action and adsorbing activities, Int. J. Biol. Macromol., 153 (2020) 545–560.
  46. S. Kumar, J. Koh, H. Kim, M.K. Gupta, P.K. Dutta, A new chitosan–thymine conjugate: synthesis, characterization and biological activity, Int. J. Biol. Macromol., 50 (2012) 493–502.
  47. A.H. Jawad, A.S. Abdulhameed, E. Kashi, Z.M. Yaseen, Z.A. Alothman, M.R. Khan, Cross-linked
    chitosan-glyoxal/ kaolin clay composite: parametric optimization for color removal and COD reduction of Remazol Brilliant Blue R dye, J. Polym. Environ., 30 (2022) 164–178.
  48. N.N.A. Malek, A.H. Jawad, K. Ismail, R. Razuan, Z.A. Alothman, Fly ash modified magnetic chitosan-polyvinyl alcohol blend for reactive orange 16 dye removal: adsorption parametric optimization, Int. J. Biol. Macromol., 189 (2021) 464–476.
  49. H. Antony, S. Peulon, L. Legrand, A. Chaussé, Electrochemical synthesis of lepidocrocite thin films on gold substrate—EQCM, IRRAS, SEM and XRD study, Electrochim. Acta, 50 (2004) 1015–1021.
  50. S. Kang, B. Xing, Adsorption of dicarboxylic acids by clay minerals as examined by in situ ATR-FTIR and ex situ DRIFT, Langmuir, 23 (2007) 7024–7031.
  51. W. Chen, X. Zhang, Y. Zhang, M. Mamadiev, Facile and efficient synthesis of polyacrylonitrile-based functional fibers and its sorption properties of perfluorooctane sulfonate and perfluorooctanoate, J. Mol. Liq., 241 (2017) 1013–1022.
  52. M. Skulinova, C. Lefebvre, P. Sobron, E. Eshelman, M. Daly, J.F. Gravel, J.F. Cormier, F. Châteauneuf, G. Slater,
    W. Zheng, A. Koujelev, R. Léveillé, Time-resolved stand-off UV-Raman spectroscopy for planetary exploration, Planet. Space Sci., 92 (2014) 88–100.
  53. M. Hassan, Y. Liu, R. Naidu, J. Du, F. Qi, Adsorption of perfluorooctane sulfonate (PFOS) onto metal oxides modified biochar, Environ. Technol. Innovation, 19 (2020) 100816, doi: 10.1016/j.eti.2020.100816.
  54. W. Guo, S. Huo, J. Feng, X. Lu, Adsorption of perfluorooctane sulfonate (PFOS) on corn straw-derived biochar prepared at different pyrolytic temperatures, J. Taiwan Inst. Chem. Eng., 78 (2017) 265–271.
  55. Q. Zhang, S. Deng, G. Yu, J. Huang, Removal of perfluorooctane sulfonate from aqueous solution by crosslinked chitosan beads: sorption kinetics and uptake mechanism, Bioresour. Technol., 102 (2011) 2265–2271.
  56. Y. Su, H. Cui, Q. Li, S. Gao, J.K. Shang, Strong adsorption of phosphate by amorphous zirconium oxide nanoparticles, Water Res., 47 (2013) 5018–5026.
  57. S. Deng, G. Yu, S. Xie, Q. Yu, J. Huang, Y. Kuwaki, M. Iseki, Enhanced adsorption of arsenate on the aminated fibers: sorption behavior and uptake mechanism, Langmuir, 24 (2008) 10961–10967.
  58. Q. Hu, H. Liu, Z. Zhang, Y. Xie, Nitrate removal from aqueous solution using polyaniline modified activated carbon: optimization and characterization, J. Mol. Liq., 309 (2020) 113057, doi:10.1016/j.molliq.2020.113057.
  59. S.S. Elanchezhiyan, S. Muthu Prabhu, J. Han, Y.M. Kim, Y. Yoon, C.M. Park, Synthesis and characterization of novel magnetic Zr-MnFe2O4@rGO nanohybrid for efficient removal of PFOA and PFOS from aqueous solutions, Appl. Surf. Sci., 528 (2020) 146579, doi: 10.1016/j.apsusc.2020.146579.
  60. C.Y. Tang, Q. Shiang Fu, D. Gao, C.S. Criddle, J.O. Leckie, Effect of solution chemistry on the adsorption of perfluorooctane sulfonate onto mineral surfaces, Water Res., 44 (2010) 2654–2662.
  61. F. Wang, K. Shih, Adsorption of perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) on alumina: influence of solution pH and cations, Water Res., 45 (2011) 2925–2930.
  62. G. Liu, L. Liao, Z. Dai, Q. Qi, J. Wu, L.Q. Ma, C. Tang, J. Xu, Organic adsorbents modified with citric acid and Fe3O4 enhance the removal of Cd and Pb in contaminated solutions, Chem. Eng. J., 395 (2020) 125108, doi:10.1016/j.cej.2020.125108.
  63. S. Fan, J. Tang, Y. Wang, H. Li, H. Zhang, J. Tang, Z. Wang, X. Li, Biochar prepared from co-pyrolysis of municipal sewage sludge and tea waste for the adsorption of methylene blue from aqueous solutions: kinetics, isotherm, thermodynamic and mechanism, J. Mol. Liq., 220 (2016) 432–441.