References

  1. L. Guerrero-Hernández, H.I. Meléndez-Ortiz, G.Y. Cortez-Mazatan, S. Vaillant-Sánchez, R.D. Peralta-Rodríguez, Gemini and bicephalous surfactants: a review on their synthesis, micelle formation, and uses, Int. J. Mol. Sci., 23 (2022) 1798, doi: 10.3390/ ijms23031798.
  2. N.-M. Lee, B.-H. Lee, Thermodynamics on the micellization of various pure and mixed surfactants: effects of head- and tail-groups, J. Chem. Thermodyn., 95 (2016) 15–20.
  3. X. Cui, Y. Jiang, C. Yang, X. Lu, H. Chen, S. Mao, M. Liu, H. Yuan, P. Luo, Y. Du, Mechanism of the mixed surfactant micelle formation, J. Phys. Chem. B, 114 (2010) 7808–7816.
  4. E. Brodskaya, Role of water in the formation of the electric double layer of micelles, J. Phys. Chem., B, 116 (2012) 5795–5800.
  5. H.I. Tantry, F.A. Sheikh, P.A. Bhat, Micellization behavior of dodecylethyldimethylammonium bromide as a function of temperature and concentration, J. Mol. Liq., 183 (2013) 79–84.
  6. N. Lourith, M. Kanlayavattanakul, Natural surfactants used in cosmetics: glycolipids, Int. J. Cosmet. Sci., 31 (2009) 255–261.
  7. P.K. Sen, P. Chatterjee, B. Pal, Evidence of co-operativity in the pre-micellar region in the hydrolytic cleavage of phenyl salicylate in the presence of cationic surfactants of CTAB, TTAB and CPC, J. Mol. Catal. A: Chem., 396 (2015) 23–30.
  8. M. Guin, R.A. Roopa, P. Jain, N.B. Singh, Heterocyclic surfactants and their applications in cosmetics, ChemistrySelect, 7 (2022) e202103989, doi: 10.1002/slct.202103989.
  9. S.M. Shaban, A.S. Fouda, M.A. Elmorsi, T. Fayed, O. Azazy, Adsorption and micellization behavior of synthesized amidoamine cationic surfactants and their biological activity, J. Mol. Liq., 216 (2016) 284–292.
  10. A. Zdziennicka, K. Szymczyk, J. Krawczyk, B. Janczuk, Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization, Fluid Phase Equilib., 322 (2012) 126–134.
  11. N. Pal, M. Vajpayee, A. Mandal, Cationic/nonionic mixed surfactants as enhanced oil recovery fluids: influence of mixed micellization and polymer association on interfacial, rheological, and rock-wetting characteristics, Energy Fuels, 33 (2019) 6048–6059.
  12. R. Zhang, P. Somasundaran, Advances in adsorption of surfactants and their mixtures at solid/solution interfaces, Adv. Colloid Interface Sci., 123–126 (2006) 213–229.
  13. A. Gürses, S. Karaca, F. Aksakal, M. Açikyildiz, Monomer and micellar adsorptions of CTAB onto the clay/water interface, Desalination, 264 (2010) 165–172.
  14. G.F. Wang, S. Wang, Z.M. Sun, S.L. Zheng, Y.F. Xi, Structures of nonionic surfactant modified montmorillonites and their enhanced adsorption capacities towards a cationic organic dye, Appl. Clay Sci., 148 (2017) 1–10.
  15. A.M. Awad, S.M.R. Shaikh, R. Jalab, M.H. Gulied, M.S. Nasser, A. Benamor, S. Adham, Adsorption of organic pollutants by natural and modified clays: a comprehensive review, Sep. Purif. Technol., 228 (2019) 115719, doi: 10.1016/j. seppur.2019.115719.
  16. Ö. Açışlı, S. Karaca, A. Gürses, Investigation of the alkyl chain lengths of surfactants on their adsorption by montmorillonite (Mt) from aqueous solutions, Appl. Clay Sci., 142 (2017) 90–99.
  17. J. Chanra, E. Budianto, B. Soegijono, Surface modification of montmorillonite by the use of organic cations via conventional ion exchange method, IOP Conf. Ser.: Mater. Sci. Eng., 509 (2019) 012057.
  18. P.T. Hang, G. Brindley, Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII), Clay Clay Miner., 18 (1970) 203–212.
  19. A. Gurses, A. Hassani, M. Kiransan, O. Acisli, S. Karaca, Removal of methylene blue from aqueous solution using by untreated lignite as potential low-cost adsorbent: kinetic, thermodynamic and equilibrium approach, J. Water Process Eng., 2 (2014) 10–21.
  20. P.S. Ghosal, A.K. Gupta, Determination of thermodynamic parameters from Langmuir isotherm constant - revisited, J. Mol. Liq., 225 (2017) 137–146.
  21. E.C. Lima, A. Hosseini-Bandegharaei, J.C. Moreno-Pirajan, I. Anastopoulos, A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hof equation for calculation of thermodynamic parameters of adsorption, J. Mol. Liq., 273 (2019) 425–434.
  22. P. Saha, S. Datta, Assessment on thermodynamics and kinetics parameters on reduction of methylene blue dye using flyash, Desal. Water Treat., 12 (2009) 219–228.
  23. P. Saha, Assessment on the removal of Methylene blue dye using tamarind fruit shell as biosorbent, Water, Air, Soil Pollut., 213 (2010) 287–299.
  24. A. Hassani, A. Khataee, S. Karaca, Photocatalytic degradation of ciprofloxacin by synthesized TiO2 nanoparticles on montmorillonite: effect of operation parameters and artificial neural network modeling, J. Mol. Catal. A: Chem., 409 (2015) 149–161.
  25. I. El Younssi, T. Rhadfi, A. Atlamsani, J.-P. Quisefit, F. Herbst, K. Draoui, K-10 montmorillonite: an efficient and reusable catalyst for the aerobic CC bond cleavage of α-substituted ketones, J. Mol. Catal. A: Chem., 363–364 (2012) 437–445.
  26. F. Rasouli, S. Aber, D. Salari, A.R. Khataee, Optimized removal of Reactive Navy Blue SP-BR by organo-montmorillonite based adsorbents through central composite design, Appl. Clay Sci., 87 (2014) 228–234.
  27. S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of Basic Green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder, Colloids Surf., B, 84 (2011) 520–527.
  28. C. Muthukumaran, V.M. Sivakumar, M. Thirumarimurugan, Adsorption isotherms and kinetic studies of crystal violet dye removal from aqueous solution using surfactant modified magnetic nanoadsorbent, J. Taiwan Inst. Chem. Eng., 63 (2016) 354–362.
  29. M. Sharma, S. Hazra, S. Basu, Kinetic and isotherm studies on adsorption of toxic pollutants using porous ZnO@SiO2 monolith, J. Colloid Interface Sci., 504 (2017) 669–679.
  30. K. Wattanakul, H. Manuspiya, N. Yanumet, The adsorption of cationic surfactants on BN surface: its effects on the thermal conductivity and mechanical properties of BN-epoxy composite, Colloids Surf., A, 369 (2010) 203–210.
  31. A. Gürses, K. Güneş, F. Mindivan, M.E. Korucu, M. Açıkyıldız, Ç. Doğar, The investigation of electrokinetic behaviour of microparticles produced by CTA+ ions and Na-montmorillonite, Appl. Surf. Sci., 318 (2014) 79–84.
  32. A. Bera, T. Kumar, K. Ojha, A. Mandal, Adsorption of surfactants on sand surface in enhanced oil recovery: isotherms, kinetics and thermodynamic studies, Appl. Surf. Sci., 284 (2013) 87–99.
  33. A.R. Bagheri, M. Ghaedi, A. Asfaram, A.A. Bazrafshan, R. Jannesar, Comparative study on ultrasonic assisted adsorption of dyes from single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon: experimental design methodology, Ultrason. Sonochem., 34 (2017) 294–304.
  34. K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J., 156 (2010) 2–10.
  35. S. Chowdhury, P.D. Saha, Biosorption kinetics, thermodynamics and isosteric heat of sorption of Cu(II) onto Tamarindus indica seed powder, Colloids Surf., B, 88 (2011) 697–705.
  36. B. Hameed, D. Mahmoud, A. Ahmad, Equilibrium modeling and kinetic studies on the adsorption of basic dye by a lowcost adsorbent: coconut (Cocos nucifera) bunch waste, J. Hazard. Mater., 158 (2008) 65–72.
  37. M. Temkin, V. Pyzhev, Recent modifications to Langmuir isotherms, Acta Physiochim, URSS, 12 (1940) 217–222.
  38. L. Zhou, J. Jin, Z. Liu, X. Liang, C. Shang, Adsorption of acid dyes from aqueous solutions by the ethylenediamine-modified magnetic chitosan nanoparticles, J. Hazard. Mater., 185 (2011) 1045–1052.
  39. M.G. Krivova, D.D. Grinshpan, N. Hedin, Adsorption of CnTABr surfactants on activated carbons, Colloids Surf., A, 436 (2013) 62–70.
  40. K.A. Tan, N. Morad, T.T. Teng, I. Norli, Synthesis of magnetic nanocomposites (AMMC-Fe3O4) for cationic dye removal: optimization, kinetic, isotherm, and thermodynamics analysis, J. Taiwan Inst. Chem. Eng., 54 (2015) 96–108.
  41. A. Pal, S. Chaudhary, Thermodynamic and aggregation behavior of aqueous tetradecyltrimethylammonium bromide in the presence of the hydrophobic ionic liquid 3-methyl-1-pentylimidazolium hexafluorophosphate, J. Mol. Liq., 207 (2015) 67–72.
  42. V.K. Paruchuri, K.Q. Fa, B.M. Moudgil, J.D. Miller, Adsorption density of spherical cetyltrimethylammonium bromide (CTAB) micelles at a silica/silicon surface, Appl. Spectrosc., 59 (2005) 668–672.
  43. R. Marsalek, J. Pospisil, B. Taraba, The influence of temperature on the adsorption of CTAB on coals, Colloids Surf., A, 383 (2011) 80–85.
  44. A. Moslemizadeh, S.K.Y. Aghdam, K. Shahbazi, H.K.Y. Aghdam, F. Alboghobeish, Assessment of swelling inhibitive effect of CTAB adsorption on montmorillonite in aqueous phase, Appl. Clay Sci., 127 (2016) 111–122.
  45. J. Guo, Y. Xia, Y. Liu, S. Liu, L. Zhang, B. Li, Microscopic adsorption behaviors of ionic surfactants on lignite surface and its effect on the wettability of lignite: a simulation and experimental study, J. Mol. Liq., 345 (2022) 117851, doi: 10.1016/j. molliq.2021.117851.
  46. R. Maršálek, Z. Navrátilová, Comparative study of CTAB adsorption on bituminous coal and clay mineral, Chem. Pap., 65 (2011) 77–84.