References

  1. H. Zhang, D. Ma, R. Qiu, Y. Tang, C. Du, Non-thermal plasma technology for organic contaminated soil remediation: a review, Chem. Eng. J., 313 (2017) 157–170.
  2. D. Ding, X. Song, C. Wei, J. LaChance, A review on the sustainability of thermal treatment for contaminated soils, Environ. Pollut., 253 (2019) 449–463.
  3. MEPC, China Earmarks 7.5 Billion Dollars for Environment Protection, 2017. Available at: http://en.people.cn/n3/2017/ 1124/c90000-9296386.html (accessed August 8, 2021).
  4. I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of soil and water contaminated with petroleum hydrocarbon: a review, Environ. Technol. Innovation, 17 (2020) 100526, doi: 10.1016/j.eti.2019.100526.
  5. J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell, P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation, Engineering, 2 (2016) 426–437.
  6. G.C. Scholes, J.I. Gerhard, G.P. Grant, D.W. Major, J.E. Vidumsky, C. Switzer, J.L. Torero, Smoldering remediation of coal-tar-contaminated soil: pilot field tests of STAR, Environ. Sci. Technol., 49 (2015) 14334–14342.
  7. G.L. Stegemeier, H.J. Vinegar, Chapter 4.6.1 – Thermal Conduction Heating for In-Situ Thermal Desorption of Soils, C.H. Oh, Ed., Hazardous and Radioactive Waste Treatment Technologies Handbook CRC Press, Boca Raton, 2001, pp. 1–37. Available at: http://s1052297.instanturl.net/pdf/white papers/paper18-11-6-09.pdf (accessed August 8, 2021).
  8. J.E. Vidonish, K. Zygourakis, C.A. Masiello, X. Gao, J. Mathieu, P.J.J. Alvarez, Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons, Environ. Sci. Technol., 50 (2016) 2498–2506.
  9. J. Krouzek, V. Durdak, J. Hendrych, P. Masin, J. Sobek, P. Spacek, Pilot scale applications of microwave heating for soil remediation, Chem. Eng. Process. Process Intensif., 130 (2018) 53–60.
  10. R. Solinger, G.P. Grant, G.C. Scholes, C. Murray, J.I. Gerhard, STARx hottpad for smoldering treatment of waste oil sludge: proof of concept and sensitivity to key design parameters, Waste Manage. Res., 38 (2020) 554–566.
  11. M.W. Lim, E. Von Lau, P.E. Poh, A comprehensive guide of remediation technologies for oil contaminated soil — present works and future directions, Mar. Pollut. Bull., 109 (2016) 14–45.
  12. C.U. Kang, D.H. Kim, M.A. Khan, R. Kumar, S.E. Ji, K.W. Choi, K.J. Paeng, S. Park, B.H. Jeon, Pyrolytic remediation of crude oil-contaminated soil, Sci. Total Environ., 713 (2020) 136498, doi: 10.1016/j.scitotenv.2020.136498.
  13. C. Zhao, Y. Li, Z. Gan, M. Nie, Method of smoldering combustion for refinery oil sludge treatment, J. Hazard. Mater., 409 (2021) 124995, doi: 10.1016/j.jhazmat.2020.124995.
  14. M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir, N.K. Copty, S.S. Abu Amr, M.F.M. Abushammala,
    T. Al Maskari, Recent advances of nanoremediation technologies for soil and groundwater remediation: a review, 13 (2021) 2186, doi: 10.3390/w13162186.
  15. D. Hou, A. Al-Tabbaa, Sustainability: a new imperative in contaminated land remediation, Environ. Sci. Policy, 39 (2014) 25–34.
  16. K.S. Holland, A framework for sustainable remediation, Environ. Sci. Technol., 45 (2011) 7116–7117.
  17. G. Lemming, M.Z. Hauschild, J. Chambon, P.J. Binning, C. Bulle, M. Margni, P.L. Bjerg, Environmental impacts of remediation of a trichloroethene-contaminated site: life cycle assessment of remediation alternatives, Environ. Sci. Technol., 44 (2010) 9163–9169.
  18. M.W. Lim, E. Von Lau, P.E. Poh, A comprehensive guide of remediation technologies for oil contaminated soil — present works and future directions, Mar. Pollut. Bull., 109 (2016) 14–45.
  19. D.E. Ellis, P.W. Hadley, Sustainable remediation white paper— integrating sustainable principles, practices, and metrics into remediation projects, Remediation, 19 (2009) 5–114.
  20. V. Cappuyns, D. Bouckenooghe, L. van Breuseghem, S. van Herreweghe, Can thermal soil remediation be sustainable? A case study of the environmental merit of the remediation of a site contaminated by a light non-aqueous phase liquid (LNAPL), J. Integr. Environ. Sci., 8 (2011) 103–121.
  21. D. Hou, L. Lu, Z.J. Ren, Microbial fuel cells and osmotic membrane bioreactors have mutual bene fi ts for wastewater treatment and energy production, 98 (2016). https://doi. org/10.1016/j.watres.2016.04.017.
  22. P.P. Falciglia, C. Ingrao, G. De Guidi, A. Catalfo, G. Finocchiaro, M. Farina, M. Liali, G. Lorenzano, G. Valastro, F.G.A. Vagliasindi, Environmental life cycle assessment of marine sediment decontamination by citric acid enhanced-microwave heating, Sci. Total Environ., 619–620 (2018) 72–82.
  23. J.-W. Liu, K.-H. Wei, S.-W. Xu, J. Cui, J. Ma, X.-L. Xiao, B.-D. Xi, X.-S. He, Surfactant-enhanced remediation
    of oil-contaminated soil and groundwater: a review, Sci. Total Environ., 756 (2020) 144142, doi:10.1016/j.scitotenv.2020.144142.
  24. C.K.J. Yeh, H.M. Wu, T.C. Chen, Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand systems, J. Hazard. Mater., 96 (2003) 29–51.
  25. C. Cameselle, R.A. Chirakkara, K.R. Reddy, Electrokineticenhanced phytoremediation of soils: status and opportunities, Chemosphere, 93 (2013) 626–636.
  26. M.A. Rodrigo, M.A. Oturan, N. Oturan, Electrochemically assisted remediation of pesticides in soils and water:
    a review, Chem. Rev., 114 (2014) 8720–8745.
  27. K. Sen Chang, W.H. Lo, W.M. Lin, J.X. Wen, S.C. Yang, C.J. Huang, H.Y. Hsieh, Microwave-assisted thermal remediation of diesel contaminated soil, Eng. J., 20 (2016) 93–100.
  28. J.L. Heiderscheidt, R.L. Siegrist, T.H. Illangasekare, Intermediate-scale 2D experimental investigation of in situ chemical oxidation using potassium permanganate for remediation of complex DNAPL source zones,
    J. Contam. Hydrol., 102 (2008) 3–16.
  29. H.W. Meinardus, V. Dwarakanath, J. Ewing, G.J. Hirasaki, R.E. Jackson, M. Jin, J.S. Ginn, J.T. Londergan,
    C.A. Miller, G.A. Pope, Performance assessment of NAPL remediation in heterogeneous alluvium, J. Contam. Hydrol., 54 (2002) 173–193.
  30. P. Thavamani, E. Smith, R. Kavitha, G. Mathieson, M. Megharaj, P. Srivastava, R. Naidu, Risk based land management requires focus beyond the target contaminants-a case study involving weathered hydrocarbon contaminated soils, Environ. Technol. Innovation, 4 (2015) 98–109.
  31. D. Camenzuli, B.L. Freidman, T.M. Statham, K.A. Mumford, D.B. Gore, On-site and in situ remediation technologies applicable to metal-contaminated sites in Antarctica and the Arctic: a review, Polar Res., 32 (2013) 1–20.
  32. S. Gan, E.V. Lau, H.K. Ng, Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs),
    J. Hazard. Mater., 172 (2009) 532–549.
  33. U. Samaksaman, T.H. Peng, J.H. Kuo, C.H. Lu, M.Y. Wey, Thermal treatment of soil co-contaminated with lube oil and heavy metals in a low temperature two-stage fluidized bed incinerator, Appl. Therm. Eng., 93 (2016) 131–138.
  34. X. Hu, J. Zhu, Q. Ding, Environmental life-cycle comparisons of two polychlorinated biphenyl remediation technologies: incineration and base catalyzed decomposition, J. Hazard. Mater., 191 (2011) 258–268.
  35. S. Koskei, Y. Cheng, W. Shi, Feasibility Studies of soil remediation for Kenya, Am. J. Life Sci., 5 (2017) 36–42.
  36. R. Rathna, S. Varjani, E. Nakkeeran, Recent developments and prospects of dioxins and furans remediation,
    J. Environ. Manage., 223 (2018) 797–806.
  37. R. Mahinroosta, L. Senevirathna, A review of the emerging treatment technologies for PFAS contaminated soils, J. Environ. Manage., 255 (2020) 109896, doi: 10.1016/j.jenvman.2019.109896.
  38. P.P. Falciglia, L. Lumia, M.G. Giustra, E. Gagliano, P. Roccaro, F.G.A. Vagliasindi, G. Di Bella, Remediation of petrol hydrocarbon-contaminated marine sediments by thermal desorption, Chemosphere, 260 (2020) 127576, doi: 10.1016/j. chemosphere.2020.127576.
  39. M. Sörengård, A.S. Lindh, L. Ahrens, Thermal desorption as a high removal remediation technique for soils contaminated with per- and polyfluoroalkyl substances (PFASs), PLoS One, 15 (2020) 1–10.
  40. Z. Zivdar, N. Heidarzadeh, G. Asadollahfardi, Remediation of diesel-contaminated soil by low temperature thermal desorption, Int. J. Environ. Sci. Technol., 16 (2019) 6113–6124.
  41. Z. Chen, J. Zhou, Z. Chen, H. Chen, Q. Chen, C. He, X. Liu, X. Yuanjian, A laboratory evaluation of superheated steam extraction process for decontamination of oil-based drill cuttings, J. Environ. Chem. Eng., 6 (2018) 6691–6699.
  42. N.A. Azizan, S.A. Kamaruddin, S. Chelliapan, Steam-enhanced extraction experiments, simulations and field studies for dense non-aqueous phase liquid removal: a review, MATEC Web Conf., 47 (2016), doi:10.1051/matecconf/20164705012.
  43. R.E. Hinchee, P.R. Dahlen, P.C. Johnson, D.R. Burris, 1,4-Dioxane soil remediation using enhanced soil vapor extraction: i. field demonstration, Groundwater Monit. Rem., 38 (2018) 40–48.
  44. L.S.D. Trine, E.L. Davis, C. Roper, L. Truong, R.L. Tanguay, S.L.M. Simonich, Formation of PAH derivatives and increased developmental toxicity during steam enhanced extraction remediation of creosote contaminated superfund soil, Environ. Sci. Technol., 53 (2019) 4460–4469.
  45. E.J. Martin, K.G. Mumford, B.H. Kueper, Electrical resistance heating of clay layers in water-saturated sand, Groundwater Monit. Rem., 36 (2016) 54–61.
  46. T. Powell, G. Smith, J. Sturza, K. Lynch, M. Truex, New advancements for in situ treatment using electrical resistance heating, Remediation, 17 (2007) 51–70.
  47. J.L. Munholland, K.G. Mumford, B.H. Kueper, Factors affecting gas migration and contaminant redistribution in heterogeneous porous media subject to electrical resistance heating, J. Contam. Hydrol., 184 (2016) 14–24.
  48. Z. Han, W. Jiao, Y. Tian, J. Hu, D. Han, Lab-scale removal of PAHs in contaminated soil using electrical resistance heating: removal efficiency and alteration of soil properties, Chemosphere, 239 (2020) 124496, doi: 10.1016/j.chemosphere.2019.124496.
  49. H. Luo, H. Wang, L. Kong, S. Li, Y. Sun, Insights into oil recovery, soil rehabilitation and low temperature behaviors of microwave-assisted petroleum-contaminated soil remediation, J. Hazard. Mater., 377 (2019) 341–348.
  50. P.P. Falciglia, G. De Guidi, A. Catalfo, F.G.A. Vagliasindi, Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation, Chem. Eng. J., 296 (2016) 162–172.
  51. P.P. Falciglia, G. De Guidi, A. Catalfo, F.G.A. Vagliasindi, Contaminant removal mechanisms in microwave heating remediation of PAH-contaminated soils, Chem. Eng. Trans., 57 (2017) 361–366.
  52. K. Cho, E. Myung, H. Kim, O. Purev, C. Park, N. Choi, Removal of total petroleum hydrocarbons from contaminated soil through microwave irradiation, Int. J. Environ. Res. Public Health, 17 (2020) 1–13.
  53. G.P. Grant, D. Major, G.C. Scholes, J. Horst, S. Hill, M.R. Klemmer, J.N. Couch, Smoldering combustion (STAR) for the treatment of contaminated soils: examining limitations and defining success, Remediation, 26 (2016) 27–51.
  54. C. Switzer, P. Pironi, J.I. Gerhard, G. Rein, J.L. Torero, Volumetric scale-up of smouldering remediation of contaminated materials, J. Hazard. Mater., 268 (2014) 51–60.
  55. A. Pape, C. Switzer, N. McCosh, C.W. Knapp, Impacts of thermal and smouldering remediation on plant growth and soil ecology, Geoderma, 243–244 (2015) 1–9.
  56. A.L. Duchesne, J.K. Brown, D.J. Patch, D. Major, K.P. Weber, J.I. Gerhard, Remediation of PFAS-contaminated soil and granular activated carbon by smoldering combustion, Environ. Sci. Technol., 54 (2020) 12631–12640.
  57. J.E. Vidonish, K. Zygourakis, C.A. Masiello, X. Gao, J. Mathieu, P.J.J. Alvarez, Pyrolytic treatment and fertility enhancement of soils contaminated with heavy hydrocarbons, Environ. Sci. Technol., 50 (2016) 2498–2506.
  58. S. Chen, X. Shu, F. Luo, H. Dong, C. Xu, B. Li, D. Shao, X. Lu, Rapid vitrification of simulated Sr2+ radioactive contaminated soil for nuclear emergencies, J. Radioanal. Nucl. Chem., 319 (2019) 115–121.
  59. X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, X. Wang, Q. Qing, X. Lu, Rapid vitrification of uranium-contaminated soil: effect and mechanism, Environ. Pollut., 263 (2020) 114539, doi:10.1016/j.envpol.2020.114539.
  60. S. Ballesteros, J.M. Rincón, B. Rincón-Mora, M.M. Jordán, Vitrification of urban soil contamination by hexavalent chromium, J. Geochem. Explor., 174 (2017) 132–139.
  61. M. Yan, F. Luo, X. Shu, H. Tang, S. Chen, G. Wei, Y. Xie, L. Wang, X. Lu, Response of simulated An3+/An4+ radioactive soil vitrification under alpha-particle irradiation, Radiat. Phys. Chem., 187 (2021) 109567, doi:10.1016/j.radphyschem.2021.109567.
  62. R.M. Abousnina, A. Manalo, J. Shiau, W. Lokuge, An overview on oil contaminated sand and its engineering applications, Int. J. Geomate, 10 (2016) 1615–1622.
  63. Z. Derakhshan Nejad, M.C. Jung, K.H. Kim, Remediation of soils contaminated with heavy metals with an emphasis on immobilization technology, Environ. Geochem. Health, 40 (2018) 927–953.
  64. S.C. Moldoveanu, Pyrolysis of Hydrocarbons, Pyrolysis Org. Mol., (2019) 35–161. Available at: https://doi.org/10.1016/ B978-0-444-64000-0.00002-0.
  65. J.E. Vidonish, P.J.J. Alvarez, K. Zygourakis, Pyrolytic Remediation of oil-contaminated soils: reaction mechanisms, soil changes, and implications for treated soil fertility, Ind. Eng. Chem. Res., 57 (2018) 3489–3500.
  66. R.H. Venderbosch, A.R. Ardiyanti, J. Wildschut, A. Oasmaa, H.J. Heeres, Stabilization of biomass-derived pyrolysis oils, J. Chem. Technol. Biotechnol., 85 (2010) 674–686.
  67. J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell, P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted soils: a review of technology innovation for sustainable remediation, Engineering, 2 (2016) 426–437.
  68. A. Özkan, Z. Günkaya, M. Banar, Pyrolysis of plants after phytoremediation of contaminated soil with lead, cadmium and zinc, Bull. Environ. Contam. Toxicol., 96 (2016) 415–419.
  69. D.C. Li, W.F. Xu, Y. Mu, H.Q. Yu, H. Jiang, J.C. Crittenden, Remediation of petroleum-contaminated soil and simultaneous recovery of oil by fast pyrolysis, Environ. Sci. Technol., 52 (2018) 5330–5338.
  70. W. Song, J.E. Vidonish, R. Kamath, P. Yu, C. Chu, B. Moorthy, B. Gao, K. Zygourakis, P.J.J. Alvarez, Pilot-scale pyrolytic remediation of crude oil-contaminated soil in a continuouslyfed reactor: treatment intensity trade-offs, Environ. Sci. Technol., 53 (2019) 2045–2053.
  71. Y. Kim, J.I. Oh, S.S. Lee, K.H. Lee, J. Lee, E.E. Kwon, Decontamination of petroleum-contaminated soil via pyrolysis under carbon dioxide atmosphere, J. Cleaner Prod., 236 (2019) 117724, doi:10.1016/j.jclepro.2019.117724.
  72. H. Kan, D. Wu, T. Wang, G. Qu, P. Zhang, H. Jia, H. Sun, Crystallographic manganese oxides enhanced pyrene contaminated soil remediation in microwave activated persulfate system, Chem. Eng. J., 417 (2021) 127916, doi: 10.1016/j.cej.2020.127916.
  73. H. Kan, T. Wang, J. Yu, G. Qu, P. Zhang, H. Jia, H. Sun, Remediation of organophosphorus pesticide polluted soil using persulfate oxidation activated by microwave, J. Hazard. Mater., 401 (2021) 123361, doi:10.1016/j.jhazmat.2020.123361.
  74. P.P. Falciglia, D. Malarbì, R. Maddalena, V. Greco, F.G.A. Vagliasindi, Remediation of Hg-contaminated marine sediments by simultaneous application of enhancing agents and microwave heating (MWH), Chem. Eng. J., 321 (2017) 1–10.
  75. K. Sivagami, B. Rajasekhar, S. Mujahed, I.M. Nambi, A.K. Rajan, Application of combined chemical oxidation and microwave treatment for hydrocarbon-contaminated soil from an urban oil spill site, J. Hazard. Toxic Radioact. Waste, 25 (2021) 04020074, doi: 10.1061/(asce)hz.2153-5515.0000570.
  76. Z. Han, S. Li, Y. Yue, Y. Tian, S. Wang, Z. Qin, L. Ji, D. Han, W. Jiao, Enhancing remediation of PAH-contaminated soil through coupling electrical resistance heating using Na2S2O8, Environ. Res., 198 (2021) 110457, doi:10.1016/j.envres.2020.110457.
  77. J. Li, L. Wang, L. Peng, Y. Deng, D. Deng, A combo system consisting of simultaneous persulfate recirculation and alternating current electrical resistance heating for the implementation of heat activated persulfate ISCO, Chem. Eng. J., 385 (2020) 123803, doi: 10.1016/j.cej.2019.123803.
  78. A. Moradi, K.M. Smits, J.O. Sharp, Coupled thermallyenhanced bioremediation and renewable energy storage system: conceptual framework and modeling investigation, Water, 10 (2018) 1288, doi:10.3390/W10101288.
  79. G.A. Aydin, B. Agaoglu, G. Kocasoy, N.K. Copty, Effect of temperature on cosolvent flooding for the enhanced solubilization and mobilization of NAPLs in porous media, J. Hazard. Mater., 186 (2011) 636–644.
  80. A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, D.M. O’Carroll, Low permeability zone remediation via oxidant delivered by electrokinetics and activated by electrical resistance heating: proof of concept, Environ. Sci. Technol., 51 (2017) 13295–13303.
  81. Z. Hua Zhao, X. Dong Li, M. Jiang Ni, T. Chen, J. Hua Yan, Remediation of PCB-contaminated soil using a combination of mechanochemical method and thermal desorption, Environ. Sci. Pollut. Res., 24 (2017) 11800–11806.
  82. J. Liu, H. Zhang, Z. Yao, X. Li, J. Tang, Thermal desorption of PCBs contaminated soil with calcium hydroxide in a rotary kiln, Chemosphere, 220 (2019) 1041–1046.
  83. P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, E. Khan, A.F. Wick, Thermal remediation alters soil properties –
    a review, J. Environ. Manage., 206 (2018) 826–835.
  84. S.J. Croat, P.L. O’Brien, C.K. Gasch, F.X.M. Casey, T.M. DeSutter, Crop production on heavily disturbed soils following crude oil remediation, Agron. J., 112 (2020) 130–138.
  85. P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, A.L.M. Daigh, J.L. Heitman, N.E. Derby, E. Khan, Daytime surface energy fluxes over soil material remediated using thermal desorption, agrosystems, Geosci. Environ., 1 (2018) 1–9.
  86. P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, A.F. Wick, E. Khan, Wheat growth in soils treated by ex situ thermal desorption, J. Environ. Qual., 46 (2017) 897–905.
  87. G. Lassalle, V. Gassend, G. Michaudel, R. Hédacq, C. Weber, C. Jennet, P. Souquet, A. Credoz, A multicriteria approach for assessing the recovery of soil functions following hightemperature remediation of hydrocarbons, Sci. Total Environ., 775 (2021), doi: 10.1016/j.scitotenv.2021.145891.
  88. Y. Song, D. Hou, J. Zhang, D. O’Connor, G. Li, Q. Gu, S. Li, P. Liu, Environmental and socio-economic sustainability appraisal of contaminated land remediation strategies: a case study at a mega-site in China, Sci. Total Environ., 610–611 (2018) 391–401.
  89. J. Ren, X. Song, D. Ding, Sustainable remediation of dieselcontaminated soil by low temperature thermal treatment: improved energy efficiency and soil reusability, Chemosphere, 241 (2020) 124952, doi:10.1016/j.chemosphere.2019.124952.
  90. D. Hou, Q. Gu, F. Ma, S. O’Connell, Life cycle assessment comparison of thermal desorption and stabilization/ solidification of mercury contaminated soil on agricultural land, J. Cleaner Prod., 139 (2016) 949–956.
  91. P.P. Falciglia, F.G.A. Vagliasindi, Techno-economic analysis of hydrocarbon-polluted soil treatment by using ex situ microwave heating: influence of soil texture and soil moisture on electric field penetration, operating conditions and energy costs, J. Soils Sediments, 16 (2016) 1330–1344.
  92. P.P. Falciglia, P. Scandura, F.G.A. Vagliasindi, Modelling and preliminary technical, energy and economic considerations for full-scale in situ remediation of low-dielectric hydrocarbonpolluted soils by microwave heating (MWH) technique, J. Soils Sediments, 18 (2018) 2350–2360.
  93. G. Hu, H. Liu, C. Chen, H. Hou, J. Li, K. Hewage, R. Sadiq, Low temperature thermal desorption and secure landfill for oil-based drill cuttings management: pollution control, human health risk, and probabilistic cost assessment, J. Hazard. Mater., 410 (2021) 124570, doi: 10.1016/j.jhazmat.2020.124570.
  94. C. Chen, X. Zhang, J. Chen, F. Chen, J. Li, Y. Chen, H. Hou, F. Shi, Assessment of site contaminated soil remediation based on an input output life cycle assessment, J. Cleaner Prod., 263 (2020) 121422, doi:10.1016/j.jclepro.2020.121422.