References
- H. Zhang, D. Ma, R. Qiu, Y. Tang, C. Du, Non-thermal plasma
technology for organic contaminated soil remediation:
a review, Chem. Eng. J., 313 (2017) 157–170.
- D. Ding, X. Song, C. Wei, J. LaChance, A review on the
sustainability of thermal treatment for contaminated soils,
Environ. Pollut., 253 (2019) 449–463.
- MEPC, China Earmarks 7.5 Billion Dollars for Environment
Protection, 2017. Available at: http://en.people.cn/n3/2017/
1124/c90000-9296386.html (accessed August 8, 2021).
- I.C. Ossai, A. Ahmed, A. Hassan, F.S. Hamid, Remediation of
soil and water contaminated with petroleum hydrocarbon:
a review, Environ. Technol. Innovation, 17 (2020) 100526,
doi: 10.1016/j.eti.2019.100526.
- J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell,
P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted
soils: a review of technology innovation for sustainable
remediation, Engineering, 2 (2016) 426–437.
- G.C. Scholes, J.I. Gerhard, G.P. Grant, D.W. Major,
J.E. Vidumsky, C. Switzer, J.L. Torero, Smoldering remediation
of coal-tar-contaminated soil: pilot field tests of STAR, Environ.
Sci. Technol., 49 (2015) 14334–14342.
- G.L. Stegemeier, H.J. Vinegar, Chapter 4.6.1 – Thermal
Conduction Heating for In-Situ Thermal Desorption of Soils,
C.H. Oh, Ed., Hazardous and Radioactive Waste Treatment
Technologies Handbook CRC Press, Boca Raton, 2001, pp. 1–37.
Available at: http://s1052297.instanturl.net/pdf/white papers/paper18-11-6-09.pdf (accessed August 8, 2021).
- J.E. Vidonish, K. Zygourakis, C.A. Masiello, X. Gao, J. Mathieu,
P.J.J. Alvarez, Pyrolytic treatment and fertility enhancement
of soils contaminated with heavy hydrocarbons, Environ. Sci.
Technol., 50 (2016) 2498–2506.
- J. Krouzek, V. Durdak, J. Hendrych, P. Masin, J. Sobek,
P. Spacek, Pilot scale applications of microwave heating
for soil remediation, Chem. Eng. Process. Process Intensif.,
130 (2018) 53–60.
- R. Solinger, G.P. Grant, G.C. Scholes, C. Murray, J.I. Gerhard,
STARx hottpad for smoldering treatment of waste oil sludge:
proof of concept and sensitivity to key design parameters,
Waste Manage. Res., 38 (2020) 554–566.
- M.W. Lim, E. Von Lau, P.E. Poh, A comprehensive guide of
remediation technologies for oil contaminated soil — present
works and future directions, Mar. Pollut. Bull., 109 (2016) 14–45.
- C.U. Kang, D.H. Kim, M.A. Khan, R. Kumar, S.E. Ji, K.W. Choi,
K.J. Paeng, S. Park, B.H. Jeon, Pyrolytic remediation of crude
oil-contaminated soil, Sci. Total Environ., 713 (2020) 136498,
doi: 10.1016/j.scitotenv.2020.136498.
- C. Zhao, Y. Li, Z. Gan, M. Nie, Method of smoldering
combustion for refinery oil sludge treatment, J. Hazard. Mater.,
409 (2021) 124995, doi: 10.1016/j.jhazmat.2020.124995.
- M.Y.D. Alazaiza, A. Albahnasawi, G.A.M. Ali, M.J.K. Bashir,
N.K. Copty, S.S. Abu Amr, M.F.M. Abushammala,
T. Al
Maskari, Recent advances of nanoremediation technologies for
soil and groundwater remediation: a review, 13 (2021) 2186,
doi: 10.3390/w13162186.
- D. Hou, A. Al-Tabbaa, Sustainability: a new imperative in
contaminated land remediation, Environ. Sci. Policy, 39 (2014)
25–34.
- K.S. Holland, A framework for sustainable remediation,
Environ. Sci. Technol., 45 (2011) 7116–7117.
- G. Lemming, M.Z. Hauschild, J. Chambon, P.J. Binning, C. Bulle,
M. Margni, P.L. Bjerg, Environmental impacts of remediation
of a trichloroethene-contaminated site: life cycle assessment
of remediation alternatives, Environ. Sci. Technol., 44 (2010)
9163–9169.
- M.W. Lim, E. Von Lau, P.E. Poh, A comprehensive guide of
remediation technologies for oil contaminated soil — present
works and future directions, Mar. Pollut. Bull., 109 (2016) 14–45.
- D.E. Ellis, P.W. Hadley, Sustainable remediation white paper—
integrating sustainable principles, practices, and metrics into
remediation projects, Remediation, 19 (2009) 5–114.
- V. Cappuyns, D. Bouckenooghe, L. van Breuseghem, S. van
Herreweghe, Can thermal soil remediation be sustainable?
A case study of the environmental merit of the remediation
of a site contaminated by a light non-aqueous phase liquid
(LNAPL), J. Integr. Environ. Sci., 8 (2011) 103–121.
- D. Hou, L. Lu, Z.J. Ren, Microbial fuel cells and osmotic
membrane bioreactors have mutual bene fi ts for wastewater
treatment and energy production, 98 (2016). https://doi.
org/10.1016/j.watres.2016.04.017.
- P.P. Falciglia, C. Ingrao, G. De Guidi, A. Catalfo, G. Finocchiaro,
M. Farina, M. Liali, G. Lorenzano, G. Valastro, F.G.A. Vagliasindi,
Environmental life cycle assessment of marine sediment
decontamination by citric acid enhanced-microwave heating,
Sci. Total Environ., 619–620 (2018) 72–82.
- J.-W. Liu, K.-H. Wei, S.-W. Xu, J. Cui, J. Ma, X.-L. Xiao, B.-D. Xi,
X.-S. He, Surfactant-enhanced remediation
of oil-contaminated
soil and groundwater: a review, Sci. Total Environ., 756 (2020)
144142, doi:10.1016/j.scitotenv.2020.144142.
- C.K.J. Yeh, H.M. Wu, T.C. Chen, Chemical oxidation of
chlorinated non-aqueous phase liquid by hydrogen peroxide
in natural sand systems, J. Hazard. Mater., 96 (2003) 29–51.
- C. Cameselle, R.A. Chirakkara, K.R. Reddy, Electrokineticenhanced
phytoremediation of soils: status and opportunities,
Chemosphere, 93 (2013) 626–636.
- M.A. Rodrigo, M.A. Oturan, N. Oturan, Electrochemically
assisted remediation of pesticides in soils and water:
a review,
Chem. Rev., 114 (2014) 8720–8745.
- K. Sen Chang, W.H. Lo, W.M. Lin, J.X. Wen, S.C. Yang,
C.J. Huang, H.Y. Hsieh, Microwave-assisted thermal
remediation of diesel contaminated soil, Eng. J., 20 (2016)
93–100.
- J.L. Heiderscheidt, R.L. Siegrist, T.H. Illangasekare, Intermediate-scale 2D experimental investigation of in situ chemical
oxidation using potassium permanganate for remediation of
complex DNAPL source zones,
J. Contam. Hydrol., 102 (2008)
3–16.
- H.W. Meinardus, V. Dwarakanath, J. Ewing, G.J. Hirasaki,
R.E. Jackson, M. Jin, J.S. Ginn, J.T. Londergan,
C.A. Miller,
G.A. Pope, Performance assessment of NAPL remediation
in heterogeneous alluvium, J. Contam. Hydrol., 54 (2002)
173–193.
- P. Thavamani, E. Smith, R. Kavitha, G. Mathieson, M. Megharaj,
P. Srivastava, R. Naidu, Risk based land management requires
focus beyond the target contaminants-a case study involving
weathered hydrocarbon contaminated soils, Environ. Technol.
Innovation, 4 (2015) 98–109.
- D. Camenzuli, B.L. Freidman, T.M. Statham, K.A. Mumford,
D.B. Gore, On-site and in situ remediation technologies
applicable to metal-contaminated sites in Antarctica and the
Arctic: a review, Polar Res., 32 (2013) 1–20.
- S. Gan, E.V. Lau, H.K. Ng, Remediation of soils contaminated
with polycyclic aromatic hydrocarbons (PAHs),
J. Hazard.
Mater., 172 (2009) 532–549.
- U. Samaksaman, T.H. Peng, J.H. Kuo, C.H. Lu, M.Y. Wey,
Thermal treatment of soil co-contaminated with lube oil and
heavy metals in a low temperature two-stage fluidized bed
incinerator, Appl. Therm. Eng., 93 (2016) 131–138.
- X. Hu, J. Zhu, Q. Ding, Environmental life-cycle comparisons
of two polychlorinated biphenyl remediation technologies:
incineration and base catalyzed decomposition, J. Hazard.
Mater., 191 (2011) 258–268.
- S. Koskei, Y. Cheng, W. Shi, Feasibility Studies of soil
remediation for Kenya, Am. J. Life Sci., 5 (2017) 36–42.
- R. Rathna, S. Varjani, E. Nakkeeran, Recent developments
and prospects of dioxins and furans remediation,
J. Environ.
Manage., 223 (2018) 797–806.
- R. Mahinroosta, L. Senevirathna, A review of the emerging
treatment technologies for PFAS contaminated soils, J. Environ.
Manage., 255 (2020) 109896, doi: 10.1016/j.jenvman.2019.109896.
- P.P. Falciglia, L. Lumia, M.G. Giustra, E. Gagliano, P. Roccaro,
F.G.A. Vagliasindi, G. Di Bella, Remediation of petrol
hydrocarbon-contaminated marine sediments by thermal
desorption, Chemosphere, 260 (2020) 127576, doi: 10.1016/j.
chemosphere.2020.127576.
- M. Sörengård, A.S. Lindh, L. Ahrens, Thermal desorption as
a high removal remediation technique for soils contaminated
with per- and polyfluoroalkyl substances (PFASs), PLoS One,
15 (2020) 1–10.
- Z. Zivdar, N. Heidarzadeh, G. Asadollahfardi, Remediation
of diesel-contaminated soil by low temperature thermal
desorption, Int. J. Environ. Sci. Technol., 16 (2019) 6113–6124.
- Z. Chen, J. Zhou, Z. Chen, H. Chen, Q. Chen, C. He, X. Liu,
X. Yuanjian, A laboratory evaluation of superheated steam
extraction process for decontamination of oil-based drill
cuttings, J. Environ. Chem. Eng., 6 (2018) 6691–6699.
- N.A. Azizan, S.A. Kamaruddin, S. Chelliapan, Steam-enhanced
extraction experiments, simulations and field studies for dense
non-aqueous phase liquid removal: a review, MATEC Web
Conf., 47 (2016), doi:10.1051/matecconf/20164705012.
- R.E. Hinchee, P.R. Dahlen, P.C. Johnson, D.R. Burris, 1,4-Dioxane
soil remediation using enhanced soil vapor extraction: i. field
demonstration, Groundwater Monit. Rem., 38 (2018) 40–48.
- L.S.D. Trine, E.L. Davis, C. Roper, L. Truong, R.L. Tanguay,
S.L.M. Simonich, Formation of PAH derivatives and increased
developmental toxicity during steam enhanced extraction
remediation of creosote contaminated superfund soil, Environ.
Sci. Technol., 53 (2019) 4460–4469.
- E.J. Martin, K.G. Mumford, B.H. Kueper, Electrical resistance
heating of clay layers in water-saturated sand, Groundwater
Monit. Rem., 36 (2016) 54–61.
- T. Powell, G. Smith, J. Sturza, K. Lynch, M. Truex, New
advancements for in situ treatment using electrical resistance
heating, Remediation, 17 (2007) 51–70.
- J.L. Munholland, K.G. Mumford, B.H. Kueper, Factors
affecting gas migration and contaminant redistribution in
heterogeneous porous media subject to electrical resistance
heating, J. Contam. Hydrol., 184 (2016) 14–24.
- Z. Han, W. Jiao, Y. Tian, J. Hu, D. Han, Lab-scale removal of PAHs
in contaminated soil using electrical resistance heating: removal
efficiency and alteration of soil properties, Chemosphere,
239 (2020) 124496, doi: 10.1016/j.chemosphere.2019.124496.
- H. Luo, H. Wang, L. Kong, S. Li, Y. Sun, Insights into oil
recovery, soil rehabilitation and low temperature behaviors of
microwave-assisted petroleum-contaminated soil remediation,
J. Hazard. Mater., 377 (2019) 341–348.
- P.P. Falciglia, G. De Guidi, A. Catalfo, F.G.A. Vagliasindi,
Remediation of soils contaminated with PAHs and nitro-PAHs
using microwave irradiation, Chem. Eng. J., 296 (2016) 162–172.
- P.P. Falciglia, G. De Guidi, A. Catalfo, F.G.A. Vagliasindi,
Contaminant removal mechanisms in microwave heating
remediation of PAH-contaminated soils, Chem. Eng. Trans.,
57 (2017) 361–366.
- K. Cho, E. Myung, H. Kim, O. Purev, C. Park, N. Choi, Removal
of total petroleum hydrocarbons from contaminated soil
through microwave irradiation, Int. J. Environ. Res. Public
Health, 17 (2020) 1–13.
- G.P. Grant, D. Major, G.C. Scholes, J. Horst, S. Hill,
M.R. Klemmer, J.N. Couch, Smoldering combustion (STAR) for
the treatment of contaminated soils: examining limitations and
defining success, Remediation, 26 (2016) 27–51.
- C. Switzer, P. Pironi, J.I. Gerhard, G. Rein, J.L. Torero, Volumetric
scale-up of smouldering remediation of contaminated materials,
J. Hazard. Mater., 268 (2014) 51–60.
- A. Pape, C. Switzer, N. McCosh, C.W. Knapp, Impacts of
thermal and smouldering remediation on plant growth and
soil ecology, Geoderma, 243–244 (2015) 1–9.
- A.L. Duchesne, J.K. Brown, D.J. Patch, D. Major, K.P. Weber,
J.I. Gerhard, Remediation of PFAS-contaminated soil and
granular activated carbon by smoldering combustion, Environ.
Sci. Technol., 54 (2020) 12631–12640.
- J.E. Vidonish, K. Zygourakis, C.A. Masiello, X. Gao, J. Mathieu,
P.J.J. Alvarez, Pyrolytic treatment and fertility enhancement
of soils contaminated with heavy hydrocarbons, Environ. Sci.
Technol., 50 (2016) 2498–2506.
- S. Chen, X. Shu, F. Luo, H. Dong, C. Xu, B. Li, D. Shao, X. Lu,
Rapid vitrification of simulated Sr2+ radioactive contaminated
soil for nuclear emergencies, J. Radioanal. Nucl. Chem.,
319 (2019) 115–121.
- X. Shu, Y. Li, W. Huang, S. Chen, C. Xu, S. Zhang, B. Li, X. Wang,
Q. Qing, X. Lu, Rapid vitrification of uranium-contaminated
soil: effect and mechanism, Environ. Pollut., 263 (2020) 114539,
doi:10.1016/j.envpol.2020.114539.
- S. Ballesteros, J.M. Rincón, B. Rincón-Mora, M.M. Jordán,
Vitrification of urban soil contamination by hexavalent
chromium, J. Geochem. Explor., 174 (2017) 132–139.
- M. Yan, F. Luo, X. Shu, H. Tang, S. Chen, G. Wei, Y. Xie, L. Wang,
X. Lu, Response of simulated An3+/An4+ radioactive soil vitrification
under alpha-particle irradiation, Radiat. Phys. Chem.,
187 (2021) 109567, doi:10.1016/j.radphyschem.2021.109567.
- R.M. Abousnina, A. Manalo, J. Shiau, W. Lokuge, An overview
on oil contaminated sand and its engineering applications,
Int. J. Geomate, 10 (2016) 1615–1622.
- Z. Derakhshan Nejad, M.C. Jung, K.H. Kim, Remediation
of soils contaminated with heavy metals with an emphasis
on immobilization technology, Environ. Geochem. Health,
40 (2018) 927–953.
- S.C. Moldoveanu, Pyrolysis of Hydrocarbons, Pyrolysis Org.
Mol., (2019) 35–161. Available at: https://doi.org/10.1016/
B978-0-444-64000-0.00002-0.
- J.E. Vidonish, P.J.J. Alvarez, K. Zygourakis, Pyrolytic Remediation
of oil-contaminated soils: reaction mechanisms, soil
changes, and implications for treated soil fertility, Ind. Eng.
Chem. Res., 57 (2018) 3489–3500.
- R.H. Venderbosch, A.R. Ardiyanti, J. Wildschut, A. Oasmaa,
H.J. Heeres, Stabilization of biomass-derived pyrolysis oils,
J. Chem. Technol. Biotechnol., 85 (2010) 674–686.
- J.E. Vidonish, K. Zygourakis, C.A. Masiello, G. Sabadell,
P.J.J. Alvarez, Thermal treatment of hydrocarbon-impacted
soils: a review of technology innovation for sustainable
remediation, Engineering, 2 (2016) 426–437.
- A. Özkan, Z. Günkaya, M. Banar, Pyrolysis of plants after
phytoremediation of contaminated soil with lead, cadmium
and zinc, Bull. Environ. Contam. Toxicol., 96 (2016) 415–419.
- D.C. Li, W.F. Xu, Y. Mu, H.Q. Yu, H. Jiang, J.C. Crittenden,
Remediation of petroleum-contaminated soil and simultaneous
recovery of oil by fast pyrolysis, Environ. Sci. Technol., 52 (2018)
5330–5338.
- W. Song, J.E. Vidonish, R. Kamath, P. Yu, C. Chu, B. Moorthy,
B. Gao, K. Zygourakis, P.J.J. Alvarez, Pilot-scale pyrolytic
remediation of crude oil-contaminated soil in a continuouslyfed
reactor: treatment intensity trade-offs, Environ. Sci. Technol.,
53 (2019) 2045–2053.
- Y. Kim, J.I. Oh, S.S. Lee, K.H. Lee, J. Lee, E.E. Kwon,
Decontamination of petroleum-contaminated soil via pyrolysis
under carbon dioxide atmosphere, J. Cleaner Prod., 236 (2019)
117724, doi:10.1016/j.jclepro.2019.117724.
- H. Kan, D. Wu, T. Wang, G. Qu, P. Zhang, H. Jia, H. Sun, Crystallographic
manganese oxides enhanced pyrene contaminated soil
remediation in microwave activated persulfate system, Chem.
Eng. J., 417 (2021) 127916, doi: 10.1016/j.cej.2020.127916.
- H. Kan, T. Wang, J. Yu, G. Qu, P. Zhang, H. Jia, H. Sun,
Remediation of organophosphorus pesticide polluted soil
using persulfate oxidation activated by microwave, J. Hazard.
Mater., 401 (2021) 123361, doi:10.1016/j.jhazmat.2020.123361.
- P.P. Falciglia, D. Malarbì, R. Maddalena, V. Greco,
F.G.A. Vagliasindi, Remediation of Hg-contaminated marine
sediments by simultaneous application of enhancing agents
and microwave
heating (MWH), Chem. Eng. J., 321 (2017) 1–10.
- K. Sivagami, B. Rajasekhar, S. Mujahed, I.M. Nambi, A.K. Rajan,
Application of combined chemical oxidation and microwave
treatment for hydrocarbon-contaminated soil from an urban
oil spill site, J. Hazard. Toxic Radioact. Waste, 25 (2021)
04020074, doi: 10.1061/(asce)hz.2153-5515.0000570.
- Z. Han, S. Li, Y. Yue, Y. Tian, S. Wang, Z. Qin, L. Ji, D. Han,
W. Jiao, Enhancing remediation of PAH-contaminated soil
through coupling electrical resistance heating using Na2S2O8,
Environ. Res., 198 (2021) 110457, doi:10.1016/j.envres.2020.110457.
- J. Li, L. Wang, L. Peng, Y. Deng, D. Deng, A combo system
consisting of simultaneous persulfate recirculation and
alternating current electrical resistance heating for the
implementation of heat activated persulfate ISCO, Chem. Eng.
J., 385 (2020) 123803, doi: 10.1016/j.cej.2019.123803.
- A. Moradi, K.M. Smits, J.O. Sharp, Coupled thermallyenhanced
bioremediation and renewable energy storage
system: conceptual framework and modeling investigation,
Water, 10 (2018) 1288, doi:10.3390/W10101288.
- G.A. Aydin, B. Agaoglu, G. Kocasoy, N.K. Copty, Effect
of temperature on cosolvent flooding for the enhanced
solubilization and mobilization of NAPLs in porous media,
J. Hazard. Mater., 186 (2011) 636–644.
- A.I.A. Chowdhury, J.I. Gerhard, D. Reynolds, D.M. O’Carroll,
Low permeability zone remediation via oxidant delivered by
electrokinetics and activated by electrical resistance heating:
proof of concept, Environ. Sci. Technol., 51 (2017) 13295–13303.
- Z. Hua Zhao, X. Dong Li, M. Jiang Ni, T. Chen, J. Hua Yan,
Remediation of PCB-contaminated soil using a combination of
mechanochemical method and thermal desorption, Environ.
Sci. Pollut. Res., 24 (2017) 11800–11806.
- J. Liu, H. Zhang, Z. Yao, X. Li, J. Tang, Thermal desorption of
PCBs contaminated soil with calcium hydroxide in a rotary
kiln, Chemosphere, 220 (2019) 1041–1046.
- P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, E. Khan, A.F. Wick,
Thermal remediation alters soil properties –
a review, J. Environ.
Manage., 206 (2018) 826–835.
- S.J. Croat, P.L. O’Brien, C.K. Gasch, F.X.M. Casey, T.M. DeSutter,
Crop production on heavily disturbed soils following crude oil
remediation, Agron. J., 112 (2020) 130–138.
- P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, A.L.M. Daigh,
J.L. Heitman, N.E. Derby, E. Khan, Daytime surface energy
fluxes over soil material remediated using thermal desorption,
agrosystems, Geosci. Environ., 1 (2018) 1–9.
- P.L. O’Brien, T.M. DeSutter, F.X.M. Casey, A.F. Wick, E. Khan,
Wheat growth in soils treated by ex situ thermal desorption,
J. Environ. Qual., 46 (2017) 897–905.
- G. Lassalle, V. Gassend, G. Michaudel, R. Hédacq, C. Weber,
C. Jennet, P. Souquet, A. Credoz, A multicriteria approach
for assessing the recovery of soil functions following hightemperature
remediation of hydrocarbons, Sci. Total Environ.,
775 (2021), doi: 10.1016/j.scitotenv.2021.145891.
- Y. Song, D. Hou, J. Zhang, D. O’Connor, G. Li, Q. Gu, S. Li,
P. Liu, Environmental and socio-economic sustainability
appraisal of contaminated land remediation strategies: a case
study at a mega-site in China, Sci. Total Environ., 610–611 (2018)
391–401.
- J. Ren, X. Song, D. Ding, Sustainable remediation of dieselcontaminated
soil by low temperature thermal treatment:
improved energy efficiency and soil reusability, Chemosphere,
241 (2020) 124952, doi:10.1016/j.chemosphere.2019.124952.
- D. Hou, Q. Gu, F. Ma, S. O’Connell, Life cycle assessment
comparison of thermal desorption and stabilization/
solidification of mercury contaminated soil on agricultural
land, J. Cleaner Prod., 139 (2016) 949–956.
- P.P. Falciglia, F.G.A. Vagliasindi, Techno-economic analysis
of hydrocarbon-polluted soil treatment by using ex situ
microwave heating: influence of soil texture and soil moisture
on electric field penetration, operating conditions and energy
costs, J. Soils Sediments, 16 (2016) 1330–1344.
- P.P. Falciglia, P. Scandura, F.G.A. Vagliasindi, Modelling and
preliminary technical, energy and economic considerations for
full-scale in situ remediation of low-dielectric hydrocarbonpolluted
soils by microwave heating (MWH) technique, J. Soils
Sediments, 18 (2018) 2350–2360.
- G. Hu, H. Liu, C. Chen, H. Hou, J. Li, K. Hewage, R. Sadiq,
Low temperature thermal desorption and secure landfill for
oil-based drill cuttings management: pollution control, human
health risk, and probabilistic cost assessment, J. Hazard.
Mater., 410 (2021) 124570, doi: 10.1016/j.jhazmat.2020.124570.
- C. Chen, X. Zhang, J. Chen, F. Chen, J. Li, Y. Chen, H. Hou,
F. Shi, Assessment of site contaminated soil remediation based
on an input output life cycle assessment, J. Cleaner Prod.,
263 (2020) 121422, doi:10.1016/j.jclepro.2020.121422.