References

  1. D. Herold, V. Horstmann, A. Neskakis, J. Plettner-Marliani, G. Piernavieja, R. Calero, Small scale photovoltaic desalination for rural water supply - demonstration plant in Gran Canaria, Renewable Energy, 14 (1998) 293–298.
  2. Z. Al Suleimani, V. Rajendran Nair, Desalination by solarpowered reverse osmosis in a remote area of the Sultanate of Oman, Appl. Energy, 65 (2000) 367–380.
  3. A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic feasibility of alternative designs of a PV-RO desalination unit for remote areas in the United Arab Emirates, Desalination, 221 (2008) 1–16.
  4. A.M. Bilton, R. Wiesman, A.F.M. Arif, S.M. Zubair, S. Dubowsky, On the feasibility of community-scale photovoltaic-powered reverse osmosis desalination systems for remote locations, Renewable Energy, 36 (2011) 3246–3256.
  5. E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination by using alternative energy:
    review and state-of-the-art, Desalination, 203 (2007) 346–365.
  6. C. Charcosset, A review of membrane processes and renewable energies for desalination, Desalination, 245 (2009) 214–231.
  7. V.J. Subiela, J.A. de la Fuente, G. Piernavieja, B. Peñate, Canary Islands Institute of Technology (ITC) experiences in desalination with renewable energies (1996–2008), Desal. Water Treat., 7 (2009) 220–235.
  8. A.M. Delgado-Torres, L. García-Rodríguez, B. Peñate, J.A. de la Fuente, G. Melián, In: A. Basile, A. Cassano,
    A. Figoli, Current Trends and Future Developments on (Bio-) Membranes, Elsevier, Amsterdam, Netherlands, Oxford, United Kingdom, Cambridge, Massachusetts, United States of America, 2019, pp. 45–84.
  9. M. Freire-Gormaly, A.M. Bilton, Impact of intermittent operation on reverse osmosis membrane fouling for brackish groundwater desalination systems, J. Membr. Sci., 583 (2019) 220–230.
  10. A. Ruiz-García, I. Nuez, Long-term intermittent operation of a full-scale BWRO desalination plant, Desalination, 489 (2020) 114526, doi: 10.1016/j.desal.2020.114526.
  11. F.J. García Latorre, S.O. Pérez Báez, A. Gómez Gotor, Energy performance of a reverse osmosis desalination plant operating with variable pressure and flow, Desalination, 366 (2015) 146–153.
  12. E, Dimitriou, P. Boutikos, E.Sh. Mohamed, S. Koziel, G. Papadakis, Theoretical performance prediction of a reverse osmosis desalination membrane element under variable operating conditions, Desalination, 419 (2017) 70–78.
  13. A.M. Bilton, L.C. Kelley, Design of power systems for reverse osmosis desalination in remote communities, Desal. Water Treat., 55 (2015) 2868–2883.
  14. M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater reverse-osmosis system with excellent energy efficiency over a wide operating range, Desalination, 153 (2003) 229–236.
  15. M. Thomson, D. Infield, Laboratory demonstration of a photovoltaic-powered seawater reverse-osmosis system without batteries, Desalination, 183 (2005) 105–111.
  16. E.Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis, A direct coupled photovoltaic seawater reverse osmosis desalination system toward battery based systems — a technical and economical experimental comparative study, Desalination, 241 (2008) 17–22.
  17. United Nations Framework Convention on Climate Change (UNFCCC), The Paris Agreement, 21st Session of the Conference of the Parties (COP 21), United Nations Framework Convention on Climate Change (UNFCCC), Bonn, Germany, 2015. Available at: https://www.unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/paris-climate-change-conference-november- 2015 (Accessed on December 13, 2020).
  18. European Commission, Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and The Committee of the Regions, Energy Roadmap 2050, European Commission, Brussels, Belgium, 2011. Available at: https://eur-lex.europa. eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0885 (Accessed on December 13, 2020).
  19. G. Amanatidis, European Policies on Climate and Energy Towards 2020, 2030 and 2050, European Parliament, Brussels, Belgium, 2019. Available at: https://www.europarl.europa. eu/thinktank/en/document.html?reference=IPOL_BRI(2019) 631047 (Accessed on December 13, 2020).
  20. G. Kavlak, J. McNerney, J.E. Trancik, Evaluating the causes of cost reduction in photovoltaic modules, Energy Policy, 123 (2018) 700–710.
  21. H. Ding, D.Q. Zhou, G.Q. Liu, P. Zhou, Cost reduction or electricity penetration: government R&D-induced PV development and future policy schemes, Renewable Sustainable Energy Rev., 124 (2020) 109752, doi:10.1016/j.rser.2020.109752.
  22. M.A. Green, Photovoltaic technology and visions for the future, Progr. Energy, 1 (2019) 013001, doi:10.1088/2516-1083/ab0fa8.
  23. J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska, State-of-the-art of renewable energy sources used in water desalination: Present and future prospects, Desalination, 508 (2021) 115035, doi:10.1016/j.desal.2021.115035.
  24. International Renewable Energy Agency (IRENA), Future of Solar Photovoltaic: Deployment, Investment, Technology, Grid Integration and Socio-Economic Aspects, International Renewable Energy Agency (IRENA), Abu Dhabi, United Arab Emirates, 2019. Available at: https://www.irena.org/ publications/2019/Nov/Future-of-Solar-Photovoltaic (Accessed on February 26, 2021).
  25. L.E. Jones, G. Olsson, Solar photovoltaic and wind energy providing water, Global Challenges, 1 (2017) 1600022, doi: 10.1002/gch2.201600022.
  26. H.A. AlBorsh, S.M. Ghabayen, Solar energy to optimize the cost of RO desalination plant case study: Deir Elbalah SWRO plant in Gaza strip, J. Eng. Res. Technol., 4 (2017) 130–136.
  27. A.K. Elfaqih, S.O. Belhaj, Economic Analysis of SWRO Desalination Plant Design Using Three Different Power Systems, Proceedings of the 10th International Renewable Energy Congress (IREC), Tunisia, March 26–28, 2019, doi: 10.1109/IREC.2019.8754569.
  28. L.T.A. Salama, K.Z. Abdalla, Design and analysis of a solar photovoltaic powered seawater reverse osmosis plant in the southern region of the Gaza Strip, Desal. Water Treat., 143 (2019) 96–101.
  29. M. Kettani, P. Bandelier, Techno-economic assessment of solar energy coupling with large-scale desalination plant: the case of Morocco, Desalination, 494 (2020) 114627, doi: 10.1016/j. desal.2020.114627.
  30. I. Zeiner, J.A. Suul, M. Molinas, Competitiveness of Grid Connected Photovoltaic Power Supply for a Desalination Plant Under a Prospective Power Market in Paraguay, Proceedings of the 2nd IEEE Conference on Power Engineering and Renewable Energy (ICPERE) 2014, Indonesia, December 9–11, 2014, doi:10.1109/ICPERE.2014.7067242.
  31. V. Fthenakis, A.A. Atia, O. Morin, R. Bkayrat, P. Sinha, New prospects for PV powered water desalination plants: case studies in Saudi Arabia, Prog. Photovoltaics, 24 (2016) 543–550.
  32. A. Alsarayreh, M. Majdalawi, R. Bhandari, Techno-economic study of PV powered brackish water reverse osmosis desalination plant in the Jordan Valley, Int. J. Therm. Environ. Eng., 14 (2017) 83–88.
  33. F. Fodhil, M. Bessenasse, I. Cherrar, Feasibility study of gridconnected photovoltaic system for seawater desalination station in Algeria, Desal. Water Treat., 165 (2019) 35–44.
  34. F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar powered desalination – technology, energy and future outlook, Desalination, 453 (2019) 54–76.
  35. U. Caldera, D. Bogdanov, C. Breyer, Chapter 8 – Desalination Costs Using Renewable Energy Technologies, V. Gnaneswar Gude, Ed., Renewable Energy Powered Desalination Handbook: Application and Thermodynamics, Butterworth-Heinemann, Oxford, 2018, pp. 287–329.
  36. F.G. Üçtuğ, A. Azapagic, Environmental impacts of smallscale hybrid energy systems: coupling solar photovoltaics and lithium-ion batteries, Sci. Total Environ., 643 (2018) 1579–1589.
  37. E. Bullich-Massagué, F.-J. Cifuentes-García, I. Glenny-Crende, M. Cheah-Mañé, M. Aragüés-Peñalba, F. Díaz-González, O. Gomis-Bellmunt, A review of energy storage technologies for large scale photovoltaic power plants, Appl. Energy, 274 (2020) 11521, doi: 10.1016/j.apenergy.2020.115213.
  38. International Energy Agency (IEA), World Energy Outlook 2020, International Energy Agency (IEA), Paris, France, 2020. Available at: https://www.iea.org/topics/world-energy-outlook (Accessed on February 24, 2021).
  39. International Renewable Energy Agency (IRENA), Electricity Storage and Renewables: Costs and Markets to 2030, International Renewable Energy Agency (IRENA), Abu Dhabi, United Arab Emirates, 2017. Available at: https://www.irena. org/publications/2017/Oct/Electricity-storage-and-renewablescosts-and-markets (Accessed on February 26, 2021).
  40. S. Li, A.P.S.G. de Carvalho, A.I. Schäfer, B.S. Richards, Renewable energy powered membrane technology: electrical energy storage options for a photovoltaic-powered brackish water desalination system, Appl. Sci., 11 (2021) 856, doi: 10.3390/app11020856.
  41. G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithiumion battery: State of the art and future perspectives, Renewable Sustainable Energy Rev., 89 (2018) 292–308.
  42. UL LLC©. Software: HOMER Pro® v3.12.4.
  43. S.C. Bhattacharyya, Energy Economics, Concepts, Issues, Markets and Governance, Springer, London, 2001.
  44. D. Gan, D. Feng, J. Xie, Electricity Markets and Power System Economics, CRC Press, Florida, 2014.
  45. F. Brihmat, S. Mekhtoub, PV cell temperature/PV power output relationships Homer methodology calculation, Int. J. Sci. Res. Eng. Technol., 2 (2014) 1–12.
  46. T. Lambert, P. Gilman, P. Lilienthal, In: F.A. Farret, M. Godoy Simões, Integration of Alternative Sources of Energy, John Wiley & Sons, 2006, pp. 379–418.
  47. E.S. Cassedy, Prospects for Sustainable Energy, A Critical Assessment, Cambridge University Press, Cambridge, 2000.
  48. S.B. Darling, F. You, T. Veselka, A. Velosa, Assumptions and the levelized cost of energy for photovoltaics, Energy Environ. Sci., 4 (2011) 3133–3139.
  49. M. Jakob, The fair cost of renewable energy, Nat. Clim. Change, 2 (2012) 488–489.
  50. C.S. Lai, M.D. McCulloch, Levelized cost of electricity for solar photovoltaic and electrical energy storage, Appl. Energy, 190 (2017) 191–203.
  51. Unión Española Fotovoltaica (UNEF), Informe Anual 2016, El Tiempo de la Energía Fotovoltaica, Unión Española Fotovoltaica, 2016. Available at: http://www.unef.es/ wp-content/uploads/dlm_uploads/2016/08/Informe-Anual- UNEf-2016_El-tiempo-de-la-energia-solar-fotovoltaica.pdf (Accessed on September 30, 2020).
  52. PORTUGAL, Diário da República. Entidade Reguladora dos Serviços Energéticos. Diretiva n.º 5/2019. Tarifas e preços para a energia elétrica e outros serviços em 2019. Diário da República, 2.ª série — N.º 13 — 18 de janeiro de 2019.
  53. Meteotest AG. Software: Meteonorm v7.3.4.