References
- D. Herold, V. Horstmann, A. Neskakis, J. Plettner-Marliani,
G. Piernavieja, R. Calero, Small scale photovoltaic desalination
for rural water supply - demonstration plant in Gran Canaria,
Renewable Energy, 14 (1998) 293–298.
- Z. Al Suleimani, V. Rajendran Nair, Desalination by solarpowered
reverse osmosis in a remote area of the Sultanate of
Oman, Appl. Energy, 65 (2000) 367–380.
- A.M. Helal, S.A. Al-Malek, E.S. Al-Katheeri, Economic
feasibility of alternative designs of a PV-RO desalination unit
for remote areas in the United Arab Emirates, Desalination,
221 (2008) 1–16.
- A.M. Bilton, R. Wiesman, A.F.M. Arif, S.M. Zubair, S. Dubowsky,
On the feasibility of community-scale photovoltaic-powered
reverse osmosis desalination systems for remote locations,
Renewable Energy, 36 (2011) 3246–3256.
- E. Mathioulakis, V. Belessiotis, E. Delyannis, Desalination
by using alternative energy:
review and state-of-the-art,
Desalination, 203 (2007) 346–365.
- C. Charcosset, A review of membrane processes and renewable
energies for desalination, Desalination, 245 (2009) 214–231.
- V.J. Subiela, J.A. de la Fuente, G. Piernavieja, B. Peñate,
Canary Islands Institute of Technology (ITC) experiences in
desalination with renewable energies (1996–2008), Desal. Water
Treat., 7 (2009) 220–235.
- A.M. Delgado-Torres, L. García-Rodríguez, B. Peñate, J.A. de la
Fuente, G. Melián, In: A. Basile, A. Cassano,
A. Figoli, Current
Trends and Future Developments on (Bio-) Membranes,
Elsevier, Amsterdam, Netherlands, Oxford, United Kingdom,
Cambridge, Massachusetts, United States of America, 2019,
pp. 45–84.
- M. Freire-Gormaly, A.M. Bilton, Impact of intermittent
operation on reverse osmosis membrane fouling for brackish
groundwater desalination systems, J. Membr. Sci., 583 (2019)
220–230.
- A. Ruiz-García, I. Nuez, Long-term intermittent operation of
a full-scale BWRO desalination plant, Desalination, 489 (2020)
114526, doi: 10.1016/j.desal.2020.114526.
- F.J. García Latorre, S.O. Pérez Báez, A. Gómez Gotor, Energy
performance of a reverse osmosis desalination plant operating
with variable pressure and flow, Desalination, 366 (2015)
146–153.
- E, Dimitriou, P. Boutikos, E.Sh. Mohamed, S. Koziel,
G. Papadakis, Theoretical performance prediction of a reverse
osmosis desalination membrane element under variable
operating conditions, Desalination, 419 (2017) 70–78.
- A.M. Bilton, L.C. Kelley, Design of power systems for reverse
osmosis desalination in remote communities, Desal. Water
Treat., 55 (2015) 2868–2883.
- M. Thomson, M.S. Miranda, D. Infield, A small-scale seawater
reverse-osmosis system with excellent energy efficiency over a
wide operating range, Desalination, 153 (2003) 229–236.
- M. Thomson, D. Infield, Laboratory demonstration of a
photovoltaic-powered seawater reverse-osmosis system
without batteries, Desalination, 183 (2005) 105–111.
- E.Sh. Mohamed, G. Papadakis, E. Mathioulakis, V. Belessiotis,
A direct coupled photovoltaic seawater reverse osmosis
desalination system toward battery based systems — a technical
and economical experimental comparative study, Desalination,
241 (2008) 17–22.
- United Nations Framework Convention on Climate Change
(UNFCCC), The Paris Agreement, 21st Session of the Conference
of the Parties (COP 21), United Nations Framework Convention
on Climate Change (UNFCCC), Bonn, Germany, 2015.
Available at: https://www.unfccc.int/process-and-meetings/conferences/past-conferences/paris-climate-change-conference-november-2015/paris-climate-change-conference-november-
2015 (Accessed on December 13, 2020).
- European Commission, Communication from the Commission
to the European Parliament, The Council, The European
Economic and Social Committee and The Committee of the
Regions, Energy Roadmap 2050, European Commission,
Brussels, Belgium, 2011. Available at: https://eur-lex.europa.
eu/legal-content/EN/TXT/?uri=CELEX%3A52011DC0885
(Accessed on December 13, 2020).
- G. Amanatidis, European Policies on Climate and Energy
Towards 2020, 2030 and 2050, European Parliament, Brussels,
Belgium, 2019. Available at: https://www.europarl.europa.
eu/thinktank/en/document.html?reference=IPOL_BRI(2019)
631047 (Accessed on December 13, 2020).
- G. Kavlak, J. McNerney, J.E. Trancik, Evaluating the causes
of cost reduction in photovoltaic modules, Energy Policy,
123 (2018) 700–710.
- H. Ding, D.Q. Zhou, G.Q. Liu, P. Zhou, Cost reduction or
electricity penetration: government R&D-induced PV development
and future policy schemes, Renewable Sustainable Energy
Rev., 124 (2020) 109752, doi:10.1016/j.rser.2020.109752.
- M.A. Green, Photovoltaic technology and visions for the future,
Progr. Energy, 1 (2019) 013001, doi:10.1088/2516-1083/ab0fa8.
- J. Bundschuh, M. Kaczmarczyk, N. Ghaffour, B. Tomaszewska,
State-of-the-art of renewable energy sources used in water
desalination: Present and future prospects, Desalination,
508 (2021) 115035, doi:10.1016/j.desal.2021.115035.
- International Renewable Energy Agency (IRENA), Future
of Solar Photovoltaic: Deployment, Investment, Technology,
Grid Integration and Socio-Economic Aspects, International
Renewable Energy Agency (IRENA), Abu Dhabi, United
Arab Emirates, 2019. Available at: https://www.irena.org/
publications/2019/Nov/Future-of-Solar-Photovoltaic (Accessed
on February 26, 2021).
- L.E. Jones, G. Olsson, Solar photovoltaic and wind energy
providing water, Global Challenges, 1 (2017) 1600022,
doi: 10.1002/gch2.201600022.
- H.A. AlBorsh, S.M. Ghabayen, Solar energy to optimize the cost
of RO desalination plant case study: Deir Elbalah SWRO plant
in Gaza strip, J. Eng. Res. Technol., 4 (2017) 130–136.
- A.K. Elfaqih, S.O. Belhaj, Economic Analysis of SWRO
Desalination Plant Design Using Three Different Power
Systems, Proceedings of the 10th International Renewable
Energy Congress (IREC), Tunisia, March 26–28, 2019,
doi: 10.1109/IREC.2019.8754569.
- L.T.A. Salama, K.Z. Abdalla, Design and analysis of a solar
photovoltaic powered seawater reverse osmosis plant in
the southern region of the Gaza Strip, Desal. Water Treat.,
143 (2019) 96–101.
- M. Kettani, P. Bandelier, Techno-economic assessment of solar
energy coupling with large-scale desalination plant: the case
of Morocco, Desalination, 494 (2020) 114627, doi: 10.1016/j.
desal.2020.114627.
- I. Zeiner, J.A. Suul, M. Molinas, Competitiveness of Grid
Connected Photovoltaic Power Supply for a Desalination Plant
Under a Prospective Power Market in Paraguay, Proceedings of
the 2nd IEEE Conference on Power Engineering and Renewable
Energy (ICPERE) 2014, Indonesia, December 9–11, 2014,
doi:10.1109/ICPERE.2014.7067242.
- V. Fthenakis, A.A. Atia, O. Morin, R. Bkayrat, P. Sinha, New
prospects for PV powered water desalination plants: case
studies in Saudi Arabia, Prog. Photovoltaics, 24 (2016) 543–550.
- A. Alsarayreh, M. Majdalawi, R. Bhandari, Techno-economic
study of PV powered brackish water reverse osmosis
desalination plant in the Jordan Valley, Int. J. Therm. Environ.
Eng., 14 (2017) 83–88.
- F. Fodhil, M. Bessenasse, I. Cherrar, Feasibility study of gridconnected
photovoltaic system for seawater desalination station
in Algeria, Desal. Water Treat., 165 (2019) 35–44.
- F.E. Ahmed, R. Hashaikeh, N. Hilal, Solar powered desalination
– technology, energy and future outlook, Desalination,
453 (2019) 54–76.
- U. Caldera, D. Bogdanov, C. Breyer, Chapter 8 – Desalination
Costs Using Renewable Energy Technologies, V. Gnaneswar
Gude, Ed., Renewable Energy Powered Desalination Handbook:
Application and Thermodynamics, Butterworth-Heinemann,
Oxford, 2018, pp. 287–329.
- F.G. Üçtuğ, A. Azapagic, Environmental impacts of smallscale
hybrid energy systems: coupling solar photovoltaics and
lithium-ion batteries, Sci. Total Environ., 643 (2018) 1579–1589.
- E. Bullich-Massagué, F.-J. Cifuentes-García, I. Glenny-Crende,
M. Cheah-Mañé, M. Aragüés-Peñalba, F. Díaz-González,
O. Gomis-Bellmunt, A review of energy storage technologies
for large scale photovoltaic power plants, Appl. Energy,
274 (2020) 11521, doi: 10.1016/j.apenergy.2020.115213.
- International Energy Agency (IEA), World Energy Outlook
2020, International Energy Agency (IEA), Paris, France, 2020.
Available at: https://www.iea.org/topics/world-energy-outlook
(Accessed on February 24, 2021).
- International Renewable Energy Agency (IRENA), Electricity
Storage and Renewables: Costs and Markets to 2030,
International Renewable Energy Agency (IRENA), Abu Dhabi,
United Arab Emirates, 2017. Available at: https://www.irena.
org/publications/2017/Oct/Electricity-storage-and-renewablescosts-and-markets (Accessed on February 26, 2021).
- S. Li, A.P.S.G. de Carvalho, A.I. Schäfer, B.S. Richards,
Renewable energy powered membrane technology: electrical
energy storage options for a photovoltaic-powered brackish
water desalination system, Appl. Sci., 11 (2021) 856, doi: 10.3390/app11020856.
- G. Zubi, R. Dufo-López, M. Carvalho, G. Pasaoglu, The lithiumion
battery: State of the art and future perspectives, Renewable
Sustainable Energy Rev., 89 (2018) 292–308.
- UL LLC©. Software: HOMER Pro® v3.12.4.
- S.C. Bhattacharyya, Energy Economics, Concepts, Issues,
Markets and Governance, Springer, London, 2001.
- D. Gan, D. Feng, J. Xie, Electricity Markets and Power System
Economics, CRC Press, Florida, 2014.
- F. Brihmat, S. Mekhtoub, PV cell temperature/PV power output
relationships Homer methodology calculation, Int. J. Sci. Res.
Eng. Technol., 2 (2014) 1–12.
- T. Lambert, P. Gilman, P. Lilienthal, In: F.A. Farret, M. Godoy
Simões, Integration of Alternative Sources of Energy, John
Wiley & Sons, 2006, pp. 379–418.
- E.S. Cassedy, Prospects for Sustainable Energy, A Critical
Assessment, Cambridge University Press, Cambridge, 2000.
- S.B. Darling, F. You, T. Veselka, A. Velosa, Assumptions and the
levelized cost of energy for photovoltaics, Energy Environ. Sci.,
4 (2011) 3133–3139.
- M. Jakob, The fair cost of renewable energy, Nat. Clim. Change,
2 (2012) 488–489.
- C.S. Lai, M.D. McCulloch, Levelized cost of electricity for
solar photovoltaic and electrical energy storage, Appl. Energy,
190 (2017) 191–203.
- Unión Española Fotovoltaica (UNEF), Informe Anual 2016,
El Tiempo de la Energía Fotovoltaica, Unión Española
Fotovoltaica, 2016. Available at: http://www.unef.es/
wp-content/uploads/dlm_uploads/2016/08/Informe-Anual-
UNEf-2016_El-tiempo-de-la-energia-solar-fotovoltaica.pdf
(Accessed on September 30, 2020).
- PORTUGAL, Diário da República. Entidade Reguladora dos
Serviços Energéticos. Diretiva n.º 5/2019. Tarifas e preços para a
energia elétrica e outros serviços em 2019. Diário da República,
2.ª série — N.º 13 — 18 de janeiro de 2019.
- Meteotest AG. Software: Meteonorm v7.3.4.