References

  1. X. Huang, F. Guo, M. Li, H. Ren, Y. Shi, L. Chen, Hydrothermal synthesis of ZnSnO3 nanoparticles decorated on g-C3N4 nanosheets for accelerated photocatalytic degradation of tetracycline under the visible-light irradiation, Sep. Purif. Technol., 230 (2020) 115854, doi: 10.1016/j.seppur.2019.115854.
  2. H. Wang, Z. Jin, R. Gan, S. Min, J. Xu, Novel strategy of defectinduced graphite nitride carbon preparation and photocatalytic performance, Catal. Lett., 148 (2018) 1296–1308.
  3. G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang, Semiconductor polymeric graphitic carbon nitride photocatalysts: the “holy grail” for the photocatalytic hydrogen evolution reaction under visible light, Energy Environ. Sci., 12 (2019) 2080–2147.
  4. N.T.T. Truc, T.-D. Pham, M.V. Nguyen, D. Van Thuan, P. Thao, H.T. Trang, D.T. Tran, D.N. Minh, N.T. Hanh,
    H.M. Ngoc, Advanced NiMoO4/g-C3N4 Z-scheme heterojunction photocatalyst for efficient conversion of CO2 to valuable products, J. Alloys Compd., 842 (2020) 155860, doi: 10.1016/j.jallcom.2020.155860.
  5. S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker, B. Sreedhar, Cost-effective and eco-friendly synthesis of novel and stable N-doped ZnO/gC3N4 core–shell nanoplates with excellent visible-light responsive photocatalysis, Nanoscale, 6 (2014) 4830–4842.
  6. M. Rakibuddin, H. Kim, Samarium(III)-doped ZnO/graphitic−C3N4 composites for enhanced hydrogen generation from water under visible light photocatalysis, J. Alloys Compd., 832 (2020) 154887, doi:10.1016/j.jallcom.2020.154887.
  7. R. Ahmad, N. Tripathy, A. Khosla, M. Khan, P. Mishra, W.A. Ansari, M.A. Syed, Y.-B. Hahn, Recent advances in nanostructured graphitic carbon nitride as a sensing material for heavy metal ions, J. Electrochem. Soc., 167 (2019) 037519.
  8. D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi, 2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced visible-light-driven photocatalytic and electrochemical degradation of organic pollutants,
    J. Environ. Manage., 274 (2020) 111208, doi: 10.1016/j.jenvman.2020.111208.
  9. B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann, J. Bisquert, Water oxidation at hematite photoelectrodes: the role of surface states, J. Am. Chem. Soc., 134 (2012) 4294–4302.
  10. Y. Geng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Z-Scheme 2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic oxidation of nitric oxide, Appl. Catal., B, 280 (2021) 119409, doi:10.1016/j.apcatb.2020.119409.
  11. K.T. Kubra, R. Sharif, B. Patil, A. Javaid, S. Shahzadi, A. Salman, S. Siddique, G. Ali, Hydrothermal synthesis of neodymium oxide nanoparticles and its nanocomposites with manganese oxide as electrode materials for supercapacitor application, J. Alloys. Compd., 815 (2020) 152104, doi: 10.1016/j. jallcom.2019.152104.
  12. S. Ahmadi, L. Mohammadi, A. Rahdar, S. Rahdar, R. Dehghani, C. Adaobi Igwegbe, G.Z. Kyzas, Acid dye removal from aqueous solution by using neodymium(III) oxide nanoadsorbents, Nanomaterials, 10 (2020) 556, doi:10.3390/nano10030556.
  13. R. James, Electrical Properties of La2CuO4 and Nd2CuO4 and Their Coexistent p-n Heterojunction, University of Oslo, 2020.
  14. K. Narasimharao, T.T. Ali, Influence of synthesis conditions on physico-chemical and photocatalytic properties of rare earth (Ho, Nd and Sm) oxides, J. Mater. Res. Technol., 9 (2020) 1819–1830.
  15. S. Mallakpour, E. Khadem, Carbon nanotube–metal oxide nanocomposites: fabrication, properties and applications, Chem. Eng. J., 302 (2016) 344–367.
  16. M. Farahmandjou, F. Soflaee, Synthesis and characterization of α-Fe2O3 nanoparticles by simple
    co-precipitation method, Phys. Chem. Res., 3 (2015) 191–196.
  17. Z. Wang, Y. Huo, Y. Fan, R. Wu, H. Wu, F. Wang, X. Xu, Facile synthesis of carbon-rich g-C3N4 by copolymerization of urea and tetracyanoethylene for photocatalytic degradation of Orange II, J. Photochem. Photobiol., A, 358 (2018) 61–69.
  18. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Sonochemical synthesis, characterization and photodegradation of organic pollutant over Nd2O3 nanostructures prepared via a new simple route, Sep. Purif. Technol., 178 (2017) 138–146.
  19. T.A. Nguyen, V. Pham, T.L. Pham, L.T.T. Nguyen, I.Y. Mittova, V. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui,
    E. Viryutina, Simple synthesis of NdFeO3 nanoparticles by the co-precipitation method based on a study of thermal behaviors of Fe(III) and Nd(III) hydroxides, Crystals, 10 (2020) 219, doi: 10.3390/cryst10030219.
  20. L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Well-dispersed Fe2O3 nanoparticles on g-C3N4 for efficient and stable photo-Fenton photocatalysis under visible-light irradiation, Eur. J. Inorg. Chem., 2016 (2016) 5387–5392.
  21. X. Zhang, L. Hao, Preparation and catalytic activity of M2O3/CNTs (M = Y, Nd, Sm) nanocomposites by solvothermal process, J. Nanomater., 2018 (2018) 3635164, doi: 10.1155/2018/3635164.
  22. B. Zhaorigetu, G. Ridi, L. Min, Preparation of Nd2O3 nanoparticles by tartrate route, J. Alloys Compd., 427 (2007) 235–237.
  23. S. Sobhanardakani, A. Jafari, R. Zandipak, A. Meidanchi, Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous solutions using Fe2O3@SiO2 thin films as a novel adsorbent, Process Saf. Environ. Prot., 120 (2018) 348–357.
  24. Y. Yang, L. Geng, Y. Guo, J. Meng, Y. Guo, Easy dispersion and excellent visible-light photocatalytic activity of the ultrathin urea-derived g-C3N4 nanosheets, Appl. Surf. Sci., 425 (2017) 535–546.
  25. X. Zheng, Y. Hu, Z. Li, Y. Dong, J. Zhang, J. Wen, H. Peng, Sm2O3 nanoparticles coated with N-doped carbon for enhanced visible-light photocatalysis, J. Phys. Chem. Solids, 130 (2019) 180–188.
  26. T. Belin, F. Epron, Characterization methods of carbon nanotubes: a review, Mater. Sci. Eng., B, 119 (2005) 105–118.
  27. J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple pyrolysis of urea into graphitic carbon nitride with recyclable adsorption and photocatalytic activity, J. Mater. Chem., 21 (2011) 14398–14401.
  28. T. Liu, Y. Zhang, H. Shao, X. Li, Synthesis and characteristics of Sm2O3 and Nd2O3 nanoparticles, Langmuir, 19 (2003) 7569–7572.
  29. P. Ghosh, S. Kundu, A. Kar, K. Ramanujachary, S. Lofland, A. Patra, Synthesis and characterization of different shaped Sm2O3 nanocrystals, J. Phys. D: Appl. Phys., 43 (2010) 405401.
  30. L. Li, H. Yu, J. Xu, S. Zhao, Z. Liu, Y. Li, Rare earth element, Sm, modified graphite phase carbon nitride heterostructure for photocatalytic hydrogen production, New J. Chem., 43 (2019) 1716–1724.
  31. J. He, F. Qiu, Q. Xu, J. An, R. Qiu, A carbon nanofibers– Sm2O3 nanocomposite: a novel electrochemical platform for simultaneously detecting two isomers of dihydroxybenzene, Anal. Methods, 10 (2018) 1852–1862.
  32. N. Masunga, B.B. Mamba, K.K. Kefeni, Trace samarium doped graphitic carbon nitride photocatalytic activity toward metanil yellow dye degradation under visible light irradiation, Colloids Surf., A, 602 (2020) 125107, doi: 10.1016/j.colsurfa.2020.125107.
  33. M. Alaei, A.R. Mahjoub, A. Rashidi, Effect of WO3 nanoparticles on Congo red and Rhodamine B photo degradation, Iran. J. Chem. CHem. Eng., 31 (2012) 23–29.
  34. N. Farooq, R. Luque, M.M. Hessien, A.M. Qureshi, F. Sahiba, M.A. Nazir, A comparative study of cerium-and ytterbiumbased GO/g-C3N4/Fe2O3 composites for electrochemical and photocatalytic applications, Appl. Sci., 11 (2021) 9000, doi: 10.3390/app11199000.
  35. P. Pascariu, C. Cojocaru, N. Olaru, P. Samoila, A. Airinei, M. Ignat, L. Sacarescu, D. Timpu, Novel rare earth
    (RE-La, Er, Sm) metal doped ZnO photocatalysts for degradation of Congo red dye: synthesis, characterization and kinetic studies, J. Environ. Manage., 239 (2019) 225–234.
  36. J. Thomas, K. Ambili, S. Radhika, Synthesis of Sm3+-doped graphitic carbon nitride nanosheets for the photocatalytic degradation of organic pollutants under sunlight, Catal. Today, 310 (2018) 11–18.
  37. A.A. Wani, A.M. Khan, Y.K. Manea, M.A. Salem, Enhanced photocatalytic degradation of organic dyes from aqueous environment using neodymium-doped mesoporous layered double hydroxide, J. Rare Earths, (2021), doi: 10.1016/j. jre.2021.09.007 (in press).
  38. Z.H. Mahmoud, R. Adham AL-Bayati, A.A. Khadom, Visible- Light Degradation of Rhodamine B Dye by Samarium Modified Anatase Titanium Dioxide (Sm-TiO2): Structural, Characterization, Optical and Electrochemical Studies, SSRN, 2021.
  39. N. Farooq, A. ur Rehman, A.M. Qureshi, Z. ur Rehman, A. Ahmad, M.K. Aslam, H.M.A. Javed, S. Hussain,
    M.A. Habila, N. AlMasoud, Au@GO@g-C3N4 and Fe2O3 nanocomposite for efficient photocatalytic and electrochemical applications, Surf. Interfaces, 26 (2021) 101399, doi: 10.1016/j.surfin.2021.101399.
  40. O.P. Kumar, M.N. Ashiq, S.S.A. Shah, S. Akhtar, M.A. Al Obaidi, I.M. Mujtaba, A. ur Rehman, Nanoscale ZrRGOCuFe layered double hydroxide composites for enhanced photocatalytic degradation of dye contaminant, Mater. Sci. Semicond. Process., 128 (2021) 105748, doi: 10.1016/j.mssp.2021.105748.
  41. M. Jourshabani, Z. Shariatinia, A. Badiei, Synthesis and characterization of novel Sm2O3/S-doped g-C3N4 nanocomposites with enhanced photocatalytic activities under visible light irradiation, Appl. Surf. Sci., 427 (2018) 375–387.
  42. A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail, W.I. Nawawi, Kinetics of photocatalytic decolourization of cationic dye using porous TiO2 film, J. Taibah Univ. Sci., 10 (2016) 352–362.
  43. I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures, Small, 8 (2012) 3073–3103.
  44. H. Zhang, C. Zhu, J. Cao, Q. Tang, M. Li, P. Kang, C. Shi, M. Ma, Ultrasonic-assisted synthesis
    of 2D α-Fe2O3@g-C3N4 composite with excellent visible light photocatalytic activity, Catalysts, 8 (2018) 457, doi: 10.3390/catal8100457.
  45. X. Lu, Q. Wang, D. Cui, Preparation and photocatalytic properties of g-C3N4/TiO2 hybrid composite, J. Mater. Sci. Technol., 26 (2010) 925–930.
  46. C. Chen, T. Liu, L. Lin, X. Xie, X. Chen, Q. Liu, B. Liang, W. Yu, C. Qiu, Multi-walled carbon nanotube-supported metaldoped ZnO nanoparticles and their photocatalytic property, J. Nanopart. Res., 15 (2013) 1–9.
  47. S.O.-B. Oppong, W.W. Anku, S.K. Shukla, E.S. Agorku, P.P. Govender, Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites, J. Sol-Gel Sci. Technol., 80 (2016) 38–49.