References
- X. Huang, F. Guo, M. Li, H. Ren, Y. Shi, L. Chen, Hydrothermal
synthesis of ZnSnO3 nanoparticles decorated on g-C3N4
nanosheets for accelerated photocatalytic degradation of
tetracycline under the visible-light irradiation, Sep. Purif.
Technol., 230 (2020) 115854, doi: 10.1016/j.seppur.2019.115854.
- H. Wang, Z. Jin, R. Gan, S. Min, J. Xu, Novel strategy of defectinduced
graphite nitride carbon preparation and photocatalytic
performance, Catal. Lett., 148 (2018) 1296–1308.
- G. Liao, Y. Gong, L. Zhang, H. Gao, G.-J. Yang, B. Fang,
Semiconductor polymeric graphitic carbon nitride
photocatalysts: the “holy grail” for the photocatalytic hydrogen
evolution reaction under visible light, Energy Environ. Sci.,
12 (2019) 2080–2147.
- N.T.T. Truc, T.-D. Pham, M.V. Nguyen, D. Van Thuan,
P. Thao, H.T. Trang, D.T. Tran, D.N. Minh, N.T. Hanh,
H.M.
Ngoc, Advanced NiMoO4/g-C3N4 Z-scheme heterojunction
photocatalyst for efficient conversion of CO2 to valuable
products, J. Alloys Compd., 842 (2020) 155860, doi: 10.1016/j.jallcom.2020.155860.
- S. Kumar, A. Baruah, S. Tonda, B. Kumar, V. Shanker,
B. Sreedhar, Cost-effective and eco-friendly synthesis of novel
and stable N-doped ZnO/gC3N4 core–shell nanoplates with
excellent visible-light responsive photocatalysis, Nanoscale,
6 (2014) 4830–4842.
- M. Rakibuddin, H. Kim, Samarium(III)-doped ZnO/graphitic−C3N4 composites for enhanced hydrogen generation from water
under visible light photocatalysis, J. Alloys Compd., 832 (2020)
154887, doi:10.1016/j.jallcom.2020.154887.
- R. Ahmad, N. Tripathy, A. Khosla, M. Khan, P. Mishra,
W.A. Ansari, M.A. Syed, Y.-B. Hahn, Recent advances in
nanostructured graphitic carbon nitride as a sensing material
for heavy metal ions, J. Electrochem. Soc., 167 (2019) 037519.
- D. Monga, D. Ilager, N.P. Shetti, S. Basu, T.M. Aminabhavi,
2D/2d heterojunction of MoS2/g-C3N4 nanoflowers for enhanced
visible-light-driven photocatalytic and electrochemical
degradation of organic pollutants,
J. Environ. Manage.,
274 (2020) 111208, doi: 10.1016/j.jenvman.2020.111208.
- B. Klahr, S. Gimenez, F. Fabregat-Santiago, T. Hamann,
J. Bisquert, Water oxidation at hematite photoelectrodes: the
role of surface states, J. Am. Chem. Soc., 134 (2012) 4294–4302.
- Y. Geng, D. Chen, N. Li, Q. Xu, H. Li, J. He, J. Lu, Z-Scheme
2D/2D α-Fe2O3/g-C3N4 heterojunction for photocatalytic
oxidation of nitric oxide, Appl. Catal., B, 280 (2021) 119409,
doi:10.1016/j.apcatb.2020.119409.
- K.T. Kubra, R. Sharif, B. Patil, A. Javaid, S. Shahzadi,
A. Salman, S. Siddique, G. Ali, Hydrothermal synthesis of
neodymium oxide nanoparticles and its nanocomposites with
manganese oxide as electrode materials for supercapacitor
application, J. Alloys. Compd., 815 (2020) 152104, doi: 10.1016/j.
jallcom.2019.152104.
- S. Ahmadi, L. Mohammadi, A. Rahdar, S. Rahdar, R. Dehghani,
C. Adaobi Igwegbe, G.Z. Kyzas, Acid dye removal from aqueous
solution by using neodymium(III) oxide nanoadsorbents,
Nanomaterials, 10 (2020) 556, doi:10.3390/nano10030556.
- R. James, Electrical Properties of La2CuO4 and Nd2CuO4 and
Their Coexistent p-n Heterojunction, University of Oslo, 2020.
- K. Narasimharao, T.T. Ali, Influence of synthesis conditions
on physico-chemical and photocatalytic properties of rare
earth (Ho, Nd and Sm) oxides, J. Mater. Res. Technol., 9 (2020)
1819–1830.
- S. Mallakpour, E. Khadem, Carbon nanotube–metal oxide
nanocomposites: fabrication, properties and applications,
Chem. Eng. J., 302 (2016) 344–367.
- M. Farahmandjou, F. Soflaee, Synthesis and characterization of
α-Fe2O3 nanoparticles by simple
co-precipitation method, Phys.
Chem. Res., 3 (2015) 191–196.
- Z. Wang, Y. Huo, Y. Fan, R. Wu, H. Wu, F. Wang, X. Xu, Facile
synthesis of carbon-rich g-C3N4 by copolymerization of urea
and tetracyanoethylene for photocatalytic degradation of
Orange II, J. Photochem. Photobiol., A, 358 (2018) 61–69.
- S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, Sonochemical synthesis, characterization and
photodegradation of organic pollutant over Nd2O3
nanostructures prepared via a new simple route, Sep. Purif.
Technol., 178 (2017) 138–146.
- T.A. Nguyen, V. Pham, T.L. Pham, L.T.T. Nguyen, I.Y. Mittova,
V. Mittova, L.N. Vo, B.T.T. Nguyen, V.X. Bui,
E. Viryutina, Simple
synthesis of NdFeO3 nanoparticles by the co-precipitation
method based on a study of thermal behaviors of Fe(III) and
Nd(III) hydroxides, Crystals, 10 (2020) 219, doi: 10.3390/cryst10030219.
- L. Zhou, L. Wang, J. Zhang, J. Lei, Y. Liu, Well-dispersed Fe2O3
nanoparticles on g-C3N4 for efficient and stable photo-Fenton
photocatalysis under visible-light irradiation, Eur. J. Inorg.
Chem., 2016 (2016) 5387–5392.
- X. Zhang, L. Hao, Preparation and catalytic activity of M2O3/CNTs (M = Y, Nd, Sm) nanocomposites by solvothermal process,
J. Nanomater., 2018 (2018) 3635164, doi: 10.1155/2018/3635164.
- B. Zhaorigetu, G. Ridi, L. Min, Preparation of Nd2O3
nanoparticles by tartrate route, J. Alloys Compd., 427 (2007)
235–237.
- S. Sobhanardakani, A. Jafari, R. Zandipak, A. Meidanchi,
Removal of heavy metal (Hg(II) and Cr(VI)) ions from aqueous
solutions using Fe2O3@SiO2 thin films as a novel adsorbent,
Process Saf. Environ. Prot., 120 (2018) 348–357.
- Y. Yang, L. Geng, Y. Guo, J. Meng, Y. Guo, Easy dispersion and
excellent visible-light photocatalytic activity of the ultrathin
urea-derived g-C3N4 nanosheets, Appl. Surf. Sci., 425 (2017)
535–546.
- X. Zheng, Y. Hu, Z. Li, Y. Dong, J. Zhang, J. Wen, H. Peng,
Sm2O3 nanoparticles coated with N-doped carbon for enhanced
visible-light photocatalysis, J. Phys. Chem. Solids, 130 (2019)
180–188.
- T. Belin, F. Epron, Characterization methods of carbon
nanotubes: a review, Mater. Sci. Eng., B, 119 (2005) 105–118.
- J. Liu, T. Zhang, Z. Wang, G. Dawson, W. Chen, Simple
pyrolysis of urea into graphitic carbon nitride with recyclable
adsorption and photocatalytic activity, J. Mater. Chem.,
21 (2011) 14398–14401.
- T. Liu, Y. Zhang, H. Shao, X. Li, Synthesis and characteristics of
Sm2O3 and Nd2O3 nanoparticles, Langmuir, 19 (2003) 7569–7572.
- P. Ghosh, S. Kundu, A. Kar, K. Ramanujachary, S. Lofland,
A. Patra, Synthesis and characterization of different shaped
Sm2O3 nanocrystals, J. Phys. D: Appl. Phys., 43 (2010) 405401.
- L. Li, H. Yu, J. Xu, S. Zhao, Z. Liu, Y. Li, Rare earth element,
Sm, modified graphite phase carbon nitride heterostructure for
photocatalytic hydrogen production, New J. Chem., 43 (2019)
1716–1724.
- J. He, F. Qiu, Q. Xu, J. An, R. Qiu, A carbon nanofibers–
Sm2O3 nanocomposite: a novel electrochemical platform for
simultaneously detecting two isomers of dihydroxybenzene,
Anal. Methods, 10 (2018) 1852–1862.
- N. Masunga, B.B. Mamba, K.K. Kefeni, Trace samarium doped
graphitic carbon nitride photocatalytic activity toward metanil
yellow dye degradation under visible light irradiation, Colloids
Surf., A, 602 (2020) 125107, doi: 10.1016/j.colsurfa.2020.125107.
- M. Alaei, A.R. Mahjoub, A. Rashidi, Effect of WO3 nanoparticles
on Congo red and Rhodamine B photo degradation, Iran.
J. Chem. CHem. Eng., 31 (2012) 23–29.
- N. Farooq, R. Luque, M.M. Hessien, A.M. Qureshi, F. Sahiba,
M.A. Nazir, A comparative study of cerium-and ytterbiumbased
GO/g-C3N4/Fe2O3 composites for electrochemical and
photocatalytic applications, Appl. Sci., 11 (2021) 9000, doi:
10.3390/app11199000.
- P. Pascariu, C. Cojocaru, N. Olaru, P. Samoila, A. Airinei,
M. Ignat, L. Sacarescu, D. Timpu, Novel rare earth
(RE-La,
Er, Sm) metal doped ZnO photocatalysts for degradation of
Congo red dye: synthesis, characterization and kinetic studies,
J. Environ. Manage., 239 (2019) 225–234.
- J. Thomas, K. Ambili, S. Radhika, Synthesis of Sm3+-doped
graphitic carbon nitride nanosheets for the photocatalytic
degradation of organic pollutants under sunlight, Catal. Today,
310 (2018) 11–18.
- A.A. Wani, A.M. Khan, Y.K. Manea, M.A. Salem, Enhanced
photocatalytic degradation of organic dyes from aqueous
environment using neodymium-doped mesoporous layered
double hydroxide, J. Rare Earths, (2021), doi: 10.1016/j.
jre.2021.09.007 (in press).
- Z.H. Mahmoud, R. Adham AL-Bayati, A.A. Khadom, Visible-
Light Degradation of Rhodamine B Dye by Samarium
Modified Anatase Titanium Dioxide (Sm-TiO2): Structural,
Characterization, Optical and Electrochemical Studies, SSRN,
2021.
- N. Farooq, A. ur Rehman, A.M. Qureshi, Z. ur Rehman,
A. Ahmad, M.K. Aslam, H.M.A. Javed, S. Hussain,
M.A. Habila,
N. AlMasoud, Au@GO@g-C3N4 and Fe2O3 nanocomposite for
efficient photocatalytic and electrochemical applications, Surf.
Interfaces, 26 (2021) 101399, doi: 10.1016/j.surfin.2021.101399.
- O.P. Kumar, M.N. Ashiq, S.S.A. Shah, S. Akhtar, M.A. Al Obaidi,
I.M. Mujtaba, A. ur Rehman, Nanoscale ZrRGOCuFe layered
double hydroxide composites for enhanced photocatalytic
degradation of dye contaminant, Mater. Sci. Semicond. Process.,
128 (2021) 105748, doi: 10.1016/j.mssp.2021.105748.
- M. Jourshabani, Z. Shariatinia, A. Badiei, Synthesis
and characterization of novel Sm2O3/S-doped g-C3N4
nanocomposites with enhanced photocatalytic activities under
visible light irradiation, Appl. Surf. Sci., 427 (2018) 375–387.
- A.H. Jawad, N.S.A. Mubarak, M.A.M. Ishak, K. Ismail,
W.I. Nawawi, Kinetics of photocatalytic decolourization
of cationic dye using porous TiO2 film, J. Taibah Univ. Sci.,
10 (2016) 352–362.
- I. Paramasivam, H. Jha, N. Liu, P. Schmuki, A review of
photocatalysis using self-organized TiO2 nanotubes and other
ordered oxide nanostructures, Small, 8 (2012) 3073–3103.
- H. Zhang, C. Zhu, J. Cao, Q. Tang, M. Li, P. Kang, C. Shi, M. Ma,
Ultrasonic-assisted synthesis
of 2D α-Fe2O3@g-C3N4 composite
with excellent visible light photocatalytic activity, Catalysts,
8 (2018) 457, doi: 10.3390/catal8100457.
- X. Lu, Q. Wang, D. Cui, Preparation and photocatalytic
properties of g-C3N4/TiO2 hybrid composite, J. Mater. Sci.
Technol., 26 (2010) 925–930.
- C. Chen, T. Liu, L. Lin, X. Xie, X. Chen, Q. Liu, B. Liang,
W. Yu, C. Qiu, Multi-walled carbon nanotube-supported metaldoped
ZnO nanoparticles and their photocatalytic property,
J. Nanopart. Res., 15 (2013) 1–9.
- S.O.-B. Oppong, W.W. Anku, S.K. Shukla, E.S. Agorku,
P.P. Govender, Photocatalytic degradation of indigo
carmine using Nd-doped TiO2-decorated graphene oxide
nanocomposites, J. Sol-Gel Sci. Technol., 80 (2016) 38–49.