References
- D.B. Walker, D.J. Baumgartner, C.P. Gerba, K. Fitzsimmons,
Chapter 16 – Surface Water Pollution, Academic Press, 2019,
pp. 261–292.
- S. Sharma, A. Bhattacharya, Drinking water contamination and
treatment techniques, Appl. Water Sci., 7 (2017) 1043–1067.
- A.L. Srivastav, M. Ranjan, Chapter 1 – Inorganic Water
Pollutants, P. Devi, P. Singh, S.K. Kansal, Eds., Inorganic
Pollutants in Water, Elsevier, 2020, pp. 1–15.
- Y. Sun, S. Zhou, P.-C. Chiang, K.J. Shah, Evaluation and
optimization of enhanced coagulation process: water and
energy nexus, Water-Energy Nexus, 2 (2019) 25–36.
- C.S. Lee, J. Robinson, M.F. Chong, A review on application of
flocculants in wastewater treatment, Process Saf. Environ. Prot.,
92 (2014) 489–508.
- H. Wei, B. Gao, J. Ren, A. Li, H. Yang, Coagulation/flocculation
in dewatering of sludge: a review, Water Res., 143 (2018)
608–631.
- B. Xiong, R.D. Loss, D. Shields, T. Pawlik, R. Hochreiter,
A.L. Zydney, M. Kumar, Polyacrylamide degradation and
its implications in environmental systems, npj Clean Water,
1 (2018) 17,
doi:10.1038/s41545-018-0016-8.
- W. Brostow, H.E.H. Lobland, S. Pal, R.P. Singh, Polymeric
flocculants for wastewater and industrial effluent treatment,
J. Mater. Educ., 31 (2009) 157–166.
- B. Zaman, N. Hardyanti, M. Arief Budiharjo, S. Budi Prasetyo,
A. Ramadhandi, A. Tri Listiyawati, Natural flocculant vs.
chemical flocculant where is better to used in wastewater
treatment, IOP Conf. Ser.: Mater. Sci. Eng., 852 (2020) 12014,
doi: 10.1088/1757-899x/852/1/012014.
- V. Ajao, H. Bruning, H. Rijnaarts, H. Temmink, Natural
flocculants from fresh and saline wastewater: comparative
properties and flocculation performances, Chem. Eng. J.,
349 (2018) 622–632.
- S. Pal, T. Nasim, A. Patra, S. Ghosh, A.B. Panda, Microwave
assisted synthesis of polyacrylamide grafted dextrin (Dxtg-
PAM): development and application of a novel polymeric
flocculant, Int. J. Biol. Macromol., 47 (2010) 623–631.
- G. Xia, J. Wan, J. Zhang, X. Zhang, L. Xu, J. Wu, J. He, J. Zhang,
Cellulose-based films prepared directly from waste newspapers
via an ionic liquid, Carbohydr. Polym., 151 (2016) 223–229.
- V. Kumar, P. Pathak, N.K. Bhardwaj, Waste paper: an
underutilized but promising source for nanocellulose mining,
Waste Manage., 102 (2020) 281–303.
- R.M. Sheltami, I. Abdullah, I. Ahmad, A. Dufresne,
H. Kargarzadeh, Extraction of cellulose nanocrystals from
mengkuang leaves (Pandanus tectorius), Carbohydr. Polym.,
88 (2012) 772–779.
- S. Mishra, A. Mukul, G. Sen, U. Jha, Microwave assisted
synthesis of polyacrylamide grafted starch (St-g-PAM) and
its applicability as flocculant for water treatment, Int. J. Biol.
Macromol., 48 (2011) 106–111.
- S.-C. Kim, Application of response surface method as an
experimental design to optimize coagulation–flocculation
process for pre-treating paper wastewater, J. Ind. Eng. Chem.,
38 (2016) 93–102.
- W.H. Danial, Z. Abdul Majid, M.N. Mohd Muhid,
S. Triwahyono, M.B. Bakar, Z. Ramli, The reuse of wastepaper
for the extraction of cellulose nanocrystals, Carbohydr. Polym.,
118 (2015) 165–169.
- V. Kumar, S. Naithani, D. Pandey, Optimization of reaction
conditions for grafting of α-cellulose isolated from Lantana
camara with acrylamide, Carbohydr. Polym., 86 (2011) 760–768.
- R. Das, S. Ghorai, S. Pal, Flocculation characteristics of
polyacrylamide grafted hydroxypropyl methyl cellulose: an
efficient biodegradable flocculant, Chem. Eng. J., 229 (2013)
144–152.
- X. Yu, X. Huang, C. Bai, X. Xiong, Modification of
microcrystalline cellulose with acrylamide under microwave
irradiation and its application as flocculant, Environ. Sci. Pollut.
Res., 26 (2019) 32859–32865.