References

  1. G. Yuliani, Potential application of lignite as adsorbents in industrial wastewater treatment: a mini review, Bull. Sumber Daya Geol., 10 (2015) 103–110.
  2. J. Kyzioł-Komosińska, C. Rosik-Dulewska, A. Dzieniszewska, M. Pająk, I. Krzyżewska, Removal of Cr(III) ions from water and wastewater by sorption onto peats and clays occurring in an overburden of lignite beds in Central Poland, Environ. Prot. Eng., 40 (2014) 5–22.
  3. A. Starzycka, J. Kasiński, A. Saternus, P. Urbański, Węgiel brunatny/Lignite, Państwowy Instytut Geologiczny – Państwowy Instytut Badawczy, 2020 (in Polish).
  4. N.H. Batjes, Total carbon and nitrogen in the soils of the world, Eur. J. Soil Sci., 47 (1996) 151–163.
  5. C.G. Pope, Lignite porosity study by kinetics of gas adsorption, Fuel, 63 (1984) 1681–1686.
  6. O.P. Mahajan, CO2 surface area of coals: the 25-year paradox, Carbon, 29 (1991) 735–742.
  7. L. Butuzova, A. Krzton, O. Bazarova, Structure and properties of humic acids obtained from thermo-oxidised brown coal, Fuel, 77 (1998) 581–584.
  8. K.J. Hütittinger, A.W. Michenfelder, Molecular structure of a brown coal, Fuel, 66 (1987) 1164–1165.
  9. Ç. Arpa, E. Başyilmaz, S. Bektaş, Ö. Genç, Y. Yürüm, Cation exchange properties of low rank Turkish coals: removal of Hg, Cd and Pb from waste water, Fuel Process. Technol., 68 (2000) 111–120.
  10. H. Polat, M. Molva, M. Polat, Capacity and mechanism of phenol adsorption on lignite, Int. J. Miner. Process., 79 (2006) 264–273.
  11. C.J. Butler, A.M. Green, A.L. Chaffee, MTE water remediation using Loy Yang brown coal as a filter bed adsorbent, Fuel, 87 (2008) 894–904.
  12. S.-D. Yin, X.-X. Tao, K.-Y. Shi, Bio-solubilization of Chinese lignite II: protein adsorption onto the lignite surface, Int. J. Min. Sci. Technol., 19 (2009) 363–368.
  13. N. Karatepe, Adsorption of a non-ionic dispersant on lignite particle surfaces, Energy Convers. Manage., 44 (2003) 1275–1284.
  14. Y. Qi, A.F.A. Hoadley, A.L. Chaffee, G. Garnier, Characterisation of lignite as an industrial adsorbent, Fuel, 90 (2011) 1567–1574.
  15. S. Johana Grajales-Mesa, G. Malina, Pilot-scale evaluation of a permeable reactive barrier with compost and brown coal to treat groundwater contaminated with trichloroethylene, Water, 11 (2019) 1922, doi:10.3390/w11091922.
  16. A. Solińska, T. Bajda, The Low-Cost Hybrid Sorbents for Immoblization of Dyes: Sorbents Features Characterization, EGU General Assembly Conference, 4–8 May 2020, EGU2020-13944.
  17. K. Kuśmierek, M. Sprynskyy, A. Świątkowski, Raw lignite as an effective low-cost adsorbent to remove phenol and chlorophenols from aqueous solutions, Sep. Sci. Technol., 55 (2020) 1741–1751.
  18. K. Kuśmierek, A. Ryś, A. Świątkowski, L. Dąbek, Comparison of adsorption behaviors of lignite and its fly ash for the removal of bisphenol A from aqueous media, Desal. Water Treat., 228 (2021) 208–216.
  19. K. von Stackelberg, A systematic review of carcinogenic outcomes and potential mechanisms from exposure to 2,4-D and MCPA in the environment, J. Toxicol., 2013 (2013) 371610, doi: 10.1155/2013/371610.
  20. K. Kuśmierek, M. Pakuła, S. Biniak, A. Świątkowski, L. Dąbek, Adsorption and electrodegradation of phenoxyacetic acids on various activated carbons, Int. J. Electrochem. Sci., 15 (2020) 5770–5781.
  21. K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions, J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
  22. G.W. Kajjumba, S. Emik, A. Öngen, H.K. Özcan, S. Aydın, Modelling of Adsorption Kinetic Processes—Errors, Theory and Application, S. Edebali, Ed., Advanced Sorption Process Applications, IntechOpen, Rijeka,
    2018, pp. 1–19.
  23. M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation of adsorption isotherm models:
    a review, J. Hazard. Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
  24. K. Sharafi, M. Pirsaheb, V.K. Gupta, S. Agarwal, M. Moradi, Y. Vasseghian, E.-N. Dragoi, Phenol adsorption on scoria stone as adsorbent – application of response surface method and artificial neural networks, J. Mol. Liq., 274 (2019) 699–714.
  25. K. Kuśmierek, A. Świątkowski, A. Białek Adsorption of phenoxyacetic acids on powdered activated carbons, Przem. Chem., 98 (2019) 1653–1658 (in Polish).
  26. B. Doczekalska, K. Kuśmierek, A. Świątkowski, M. Bartkowiak, Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2- methylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials, J. Environ. Sci. Health., Part B, 53 (2018) 290–297.
  27. K. Kuśmierek, L. Dąbek, W. Kamiński, A. Świątkowski, Evaluation of the usefulness of peat for removal of chlorophenols from water solutions, Ochr. Srod., 35 (2013) 51–55 (in Polish).
  28. B.V. Kavanagh, A.M. Posner, J.P. Quirk, The adsorption of phenoxyacetic acid herbicides on goethite, J. Colloid Interface Sci., 61 (1977) 545–553.
  29. M.M. Abdel daiem, J. Rivera-Utrilla, M. Sánchez-Polo, R. Ocampo-Pérez, Single, competitive, and dynamic adsorption on activated carbon of compounds used as plasticizers and herbicides, Sci. Total Environ., 537 (2015) 335–342.
  30. R. Ocampo-Pérez, M.M. Abdel daiem, J. Rivera-Utrilla, J.D. Méndez-Díaz, M. Sánchez-Polo, Modeling adsorption rate of organic micropollutants present in landfill leachates onto granular activated carbon, J. Colloid Interface Sci., 385 (2012) 174–182.
  31. M.M. Abdel daiem, M. Sánchez-Polo, A.S. Rashed, N. Kamal, N. Said, Adsorption mechanism and modelling of hydrocarbon contaminants onto rice straw activated carbons, Pol. J. Chem. Technol., 21 (2019) 1–12.
  32. G. Atçay, K. Yurdakoç, Removal of various phenoxyalkanoic acid herbicides from water by organo-clays, Acta Hydroch. Hydrob., 28 (2000) 300–304.
  33. M. Essandoh, D. Wolgemuth, C.U. Pittman Jr., D. Mohan, T. Mlsna, Phenoxy herbicide removal from aqueous solutions using fast pyrolysis switchgrass biochar, Chemosphere, 174 (2017) 49–57.
  34. L.P. Cardoso, J.B. Valim, Study of acids herbicides removal by calcined Mg–Al–CO3–LDH, J. Phys. Chem. Solids, 67 (2006) 987–993.