References
- G. Yuliani, Potential application of lignite as adsorbents in
industrial wastewater treatment: a mini review, Bull. Sumber
Daya Geol., 10 (2015) 103–110.
- J. Kyzioł-Komosińska, C. Rosik-Dulewska, A. Dzieniszewska,
M. Pająk, I. Krzyżewska, Removal of Cr(III) ions from water
and wastewater by sorption onto peats and clays occurring in
an overburden of lignite beds in Central Poland, Environ. Prot.
Eng., 40 (2014) 5–22.
- A. Starzycka, J. Kasiński, A. Saternus, P. Urbański, Węgiel
brunatny/Lignite, Państwowy Instytut Geologiczny –
Państwowy Instytut Badawczy, 2020 (in Polish).
- N.H. Batjes, Total carbon and nitrogen in the soils of the world,
Eur. J. Soil Sci., 47 (1996) 151–163.
- C.G. Pope, Lignite porosity study by kinetics of gas adsorption,
Fuel, 63 (1984) 1681–1686.
- O.P. Mahajan, CO2 surface area of coals: the 25-year paradox,
Carbon, 29 (1991) 735–742.
- L. Butuzova, A. Krzton, O. Bazarova, Structure and properties
of humic acids obtained from thermo-oxidised brown coal,
Fuel, 77 (1998) 581–584.
- K.J. Hütittinger, A.W. Michenfelder, Molecular structure of a
brown coal, Fuel, 66 (1987) 1164–1165.
- Ç. Arpa, E. Başyilmaz, S. Bektaş, Ö. Genç, Y. Yürüm, Cation
exchange properties of low rank Turkish coals: removal of Hg,
Cd and Pb from waste water, Fuel Process. Technol., 68 (2000)
111–120.
- H. Polat, M. Molva, M. Polat, Capacity and mechanism of
phenol adsorption on lignite, Int. J. Miner. Process., 79 (2006)
264–273.
- C.J. Butler, A.M. Green, A.L. Chaffee, MTE water remediation
using Loy Yang brown coal as a filter bed adsorbent, Fuel,
87 (2008) 894–904.
- S.-D. Yin, X.-X. Tao, K.-Y. Shi, Bio-solubilization of Chinese
lignite II: protein adsorption onto the lignite surface, Int. J. Min.
Sci. Technol., 19 (2009) 363–368.
- N. Karatepe, Adsorption of a non-ionic dispersant on lignite
particle surfaces, Energy Convers. Manage., 44 (2003) 1275–1284.
- Y. Qi, A.F.A. Hoadley, A.L. Chaffee, G. Garnier, Characterisation
of lignite as an industrial adsorbent, Fuel, 90 (2011) 1567–1574.
- S. Johana Grajales-Mesa, G. Malina, Pilot-scale evaluation of
a permeable reactive barrier with compost and brown coal to
treat groundwater contaminated with trichloroethylene, Water,
11 (2019) 1922, doi:10.3390/w11091922.
- A. Solińska, T. Bajda, The Low-Cost Hybrid Sorbents for
Immoblization of Dyes: Sorbents Features Characterization,
EGU General Assembly Conference, 4–8 May 2020,
EGU2020-13944.
- K. Kuśmierek, M. Sprynskyy, A. Świątkowski, Raw lignite
as an effective low-cost adsorbent to remove phenol and
chlorophenols from aqueous solutions, Sep. Sci. Technol.,
55 (2020) 1741–1751.
- K. Kuśmierek, A. Ryś, A. Świątkowski, L. Dąbek, Comparison
of adsorption behaviors of lignite and its fly ash for the removal
of bisphenol A from aqueous media, Desal. Water Treat.,
228 (2021) 208–216.
- K. von Stackelberg, A systematic review of carcinogenic
outcomes and potential mechanisms from exposure to 2,4-D
and MCPA in the environment, J. Toxicol., 2013 (2013) 371610,
doi: 10.1155/2013/371610.
- K. Kuśmierek, M. Pakuła, S. Biniak, A. Świątkowski, L. Dąbek,
Adsorption and electrodegradation of phenoxyacetic acids on
various activated carbons, Int. J. Electrochem. Sci., 15 (2020)
5770–5781.
- K.L. Tan, B.H. Hameed, Insight into the adsorption kinetics
models for the removal of contaminants from aqueous solutions,
J. Taiwan Inst. Chem. Eng., 74 (2017) 25–48.
- G.W. Kajjumba, S. Emik, A. Öngen, H.K. Özcan, S. Aydın,
Modelling of Adsorption Kinetic Processes—Errors, Theory
and Application, S. Edebali, Ed., Advanced Sorption Process
Applications, IntechOpen, Rijeka,
2018, pp. 1–19.
- M.A. Al-Ghouti, D.A. Da’ana, Guidelines for the use and interpretation
of adsorption isotherm models:
a review, J. Hazard.
Mater., 393 (2020) 122383, doi: 10.1016/j.jhazmat.2020.122383.
- K. Sharafi, M. Pirsaheb, V.K. Gupta, S. Agarwal, M. Moradi,
Y. Vasseghian, E.-N. Dragoi, Phenol adsorption on scoria stone
as adsorbent – application of response surface method and
artificial neural networks, J. Mol. Liq., 274 (2019) 699–714.
- K. Kuśmierek, A. Świątkowski, A. Białek Adsorption of
phenoxyacetic acids on powdered activated carbons, Przem.
Chem., 98 (2019) 1653–1658 (in Polish).
- B. Doczekalska, K. Kuśmierek, A. Świątkowski, M. Bartkowiak,
Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-
methylphenoxyacetic acid onto activated carbons derived from
various lignocellulosic materials, J. Environ. Sci. Health., Part B,
53 (2018) 290–297.
- K. Kuśmierek, L. Dąbek, W. Kamiński, A. Świątkowski,
Evaluation of the usefulness of peat for removal of chlorophenols
from water solutions, Ochr. Srod., 35 (2013) 51–55 (in Polish).
- B.V. Kavanagh, A.M. Posner, J.P. Quirk, The adsorption of
phenoxyacetic acid herbicides on goethite, J. Colloid Interface
Sci., 61 (1977) 545–553.
- M.M. Abdel daiem, J. Rivera-Utrilla, M. Sánchez-Polo,
R. Ocampo-Pérez, Single, competitive, and dynamic adsorption
on activated carbon of compounds used as plasticizers and
herbicides, Sci. Total Environ., 537 (2015) 335–342.
- R. Ocampo-Pérez, M.M. Abdel daiem, J. Rivera-Utrilla,
J.D. Méndez-Díaz, M. Sánchez-Polo, Modeling adsorption rate
of organic micropollutants present in landfill leachates onto
granular activated carbon, J. Colloid Interface Sci., 385 (2012)
174–182.
- M.M. Abdel daiem, M. Sánchez-Polo, A.S. Rashed, N. Kamal,
N. Said, Adsorption mechanism and modelling of hydrocarbon
contaminants onto rice straw activated carbons, Pol. J. Chem.
Technol., 21 (2019) 1–12.
- G. Atçay, K. Yurdakoç, Removal of various phenoxyalkanoic
acid herbicides from water by organo-clays, Acta Hydroch.
Hydrob., 28 (2000) 300–304.
- M. Essandoh, D. Wolgemuth, C.U. Pittman Jr., D. Mohan,
T. Mlsna, Phenoxy herbicide removal from aqueous solutions
using fast pyrolysis switchgrass biochar, Chemosphere,
174 (2017) 49–57.
- L.P. Cardoso, J.B. Valim, Study of acids herbicides removal by
calcined Mg–Al–CO3–LDH, J. Phys. Chem. Solids, 67 (2006)
987–993.