References
- M. Genisoglu, A.Y. Goren, E. Balci, Y.K. Recepoglu, H.E. Ökten,
Pomza ve nSDD-Pomza ile Sabit Yataklı Kolon Reaktörde
Metilen Mavisi Giderimi: Deneysel ve Modelleme Çalışması,
Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi,
2019, pp. 298–305. Available at: https://doi.org/10.19113/
sdufenbed.538084
- J. Liu, F. Chen, Q. Yao, Y. Sun, W. Huang, R. Wang, B. Yang,
W. Li, J. Tian, Application and prospect of graphene and its
composites in wastewater treatment, Pol. J. Environ. Stud.,
29 (2020) 3965–3974.
- M.Y. Kilic, A comparative treatability study for textile
wastewater: Agricultural waste adsorbent versus activated
carbon, Pol. J. Environ. Stud., 29 (2020) 4131–4137.
- V.M. Vučurović, R.N. Razmovski, U.D. Miljić, V.S. Puškaš,
Removal of cationic and anionic azo dyes from aqueous
solutions by adsorption on maize stem tissue, J. Taiwan Inst.
Chem. Eng., 45 (2014) 1700–1708.
- A. Mittal, J. Mittal, Chapter 11 – Hen Feather: A Remarkable
Adsorbent for Dye Removal, In: Green Chemistry for Dyes
Removal from Wastewater: Research Trends and Applications,
2015, pp. 409–457. doi:10.1002/9781118721001.
ch11.
- L. Wu, X. Liu, G. Lv, R. Zhu, L. Tian, M. Liu, Y. Li, W. Rao, T. Liu,
L. Liao, Study on the adsorption properties of Methyl orange by
natural one-dimensional nano-mineral materials with different
structures, Sci. Rep., 11 (2021) 1–11.
- J. Mittal, Recent progress in the synthesis of layered double
hydroxides and their application for the adsorptive removal
of dyes: a review, J. Environ. Manage., 295 (2021) 113017,
doi:10.1016/j.jenvman.2021.113017.
- A. Pirkarami, M.E. Olya, Removal of dye from industrial
wastewater with an emphasis on improving economic efficiency
and degradation mechanism, J. Saudi Chem. Soc., 21 (2017)
S179–S186.
- V.T. Lam, T.-U.T. Dao, H.-T.T. Nguyen, D. Thi Cam Nguyen,
H.T.N. Le, H.T.T. Nguyen, S.T. Do, H.H. Loc, T. Duy Nguyen,
Process optimization studies of Congo red dye adsorption
onto magnesium aluminium layered double hydroxide using
response surface methodology, Pol. J. Environ. Stud., 30 (2020)
679–687.
- B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio,
Effects of textile dyes on health and the environment and
bioremediation potential of living organisms, Biotechnol. Res.
Innovation., 3 (2019) 275–290.
- D.D. Sewu, P. Boakye, S.H. Woo, Highly efficient adsorption of
cationic dye by biochar produced with Korean cabbage waste,
Bioresour. Technol., 224 (2017) 206–213.
- D. Suteu, T. Malutan, D. Bilba, Removal of reactive dye Brilliant
Red HE-3B from aqueous solutions by industrial lignin:
equilibrium and kinetics modeling, Desalination, 255 (2010)
84–90.
- J. Mittal, Permissible synthetic food dyes in India, Resonance,
25 (2020) 567–577.
- N. Sahu, S. Rawat, J. Singh, R.R. Karri, S. Lee, J.-S. Choi,
J. Reddy Koduru, Process optimization and modeling of
Methylene blue adsorption using zero-valent iron nanoparticles
synthesized from sweet lime pulp, Appl. Sci., 9 (2019) doi:
10.3390/app9235112.
- Y. Feng, H. Zhou, G. Liu, J. Qiao, J. Wang, H. Lu, L. Yang, Y. Wu,
Methylene blue adsorption onto swede rape straw (Brassica
napus L.) modified by tartaric acid: equilibrium, kinetic and
adsorption mechanisms, Bioresour. Technol., 125 (2012)
138–144.
- Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal
of Methyl orange from aqueous solution using bentonitesupported
nanoscale zero-valent iron, J. Colloid Interface Sci.,
363 (2011) 601–607.
- M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents
derived from agricultural by-products/wastes for enhancing
contaminant uptakes from wastewater: a review, Pol. J. Environ.
Stud., 26 (2017) 479–510.
- Y. Feng, D.D. Dionysiou, Y. Wu, H. Zhou, L. Xue, S. He,
L. Yang, Adsorption of dyestuff from aqueous solutions
through oxalic acid-modified swede rape straw: adsorption
process and disposal methodology of depleted bioadsorbents,
Bioresour. Technol., 138 (2013) 191–197.
- M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen,
Synthesis, characterization, and dye sorption ability of carbon
nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014)
39–46.
- R. Yousef, H. Qiblawey, Adsorption as a process for produced
water treatment: a review, Processes, 8 (2020) 1657, doi: 10.3390/pr8121657.
- J.Z. Guo, B. Li, L. Liu, K. Lv, Removal of Methylene blue
from aqueous solutions by chemically modified bamboo,
Chemosphere, 111 (2014) 225–231.
- Prof. Ferhan Çeçen, Dr. Özgür Aktaş, Chapter 1 – Water and
Wastewater Treatment: Historical Perspective of Activated
Carbon Adsorption and its Integration with Biological
Processes, In: Activated Carbon for Water and Wastewater
Treatment: Integration of Adsorption and Biological Treatment,
Wiley‐VCH Verlag GmbH & Co. KGaA, 2011, pp. 1–12.
- A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and
municipal waste materials as potential adsorbents for water
treatment — a review, 157 (2010) 277–296.
- P.S. Shah, Nanoporous Carbon From Corn Cobs and Its
Applications, Ph.D., 2007 MU Dissertations, Chemical
Engineering Electronic Theses and Dissertations (MU), 2007,
pp. 74–94.
- G.Z. Kyzas, M. Kostoglou, Green adsorbents for wastewaters: a
critical review, Materials, 7 (2014) 333–364.
- B. Li, L. Yang, C. Quan Wang, Q. Pei Zhang, Q. Cheng Liu,
Y. Ding Li, R. Xiao, Adsorption of Cd(II) from aqueous
solutions by rape straw biochar derived from different
modification processes, Chemosphere, 175 (2017) 332–340.
- L. Sun, D. Chen, S. Wan, Z. Yu, Performance, kinetics, and
equilibrium of Methylene blue adsorption on biochar derived
from eucalyptus saw dust modified with citric, tartaric, and
acetic acids, Bioresour. Technol., 198 (2015) 300–308.
- L.G. da Silva, R. Ruggiero, P. de M. Gontijo, R.B. Pinto, B. Royer,
E.C. Lima, T.H.M. Fernandes, T. Calvete, Adsorption of Brilliant
Red 2BE dye from water solutions by a chemically modified
sugarcane bagasse lignin, Chem. Eng. J., 168 (2011) 620–628.
- E.I. Unuabonah, G.U. Adie, L.O. Onah, O.G. Adeyemi,
Multistage optimization of the adsorption of Methylene
blue dye onto defatted Carica papaya seeds, Chem. Eng. J.,
155 (2009) 567–579.
- B.H. Hameed, Evaluation of papaya seeds as a novel nonconventional
low-cost adsorbent for removal of Methylene
blue, J. Hazard. Mater., 162 (2009) 939–944.
- X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang,
Application of biochar for the removal of pollutants from
aqueous solutions, Chemosphere, 125 (2015) 70–85.
- W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang,
Y. Sik, B. Gao, Chemosphere biochar technology in wastewater
treatment: a critical review, Chemosphere, 252 (2020) 126539,
doi:10.1016/j.chemosphere.2020.126539.
- L. Han, S. Xue, S. Zhao, J. Yan, L. Qian, M. Chen, Biochar
supported nanoscale iron particles for the efficient removal of
Methyl orange dye in aqueous solutions, PLoS One, 10 (2015)
1–15.
- X. Peng, X. Liu, Y. Zhou, B. Peng, L. Tang, L. Luo, B. Yao, Y. Deng,
J. Tang, G. Zeng, New insights into the activity of a biochar
supported nanoscale zero-valent iron composite and nanoscale
zero valent iron under anaerobic or aerobic conditions, RSC
Adv., 7 (2017) 8755–8761.
- X. Fei Tan, Y. Guo Liu, Y. Ling Gu, Y. Xu, G. Ming Zeng, X. Jiang
Hu, S. Bo Liu, X. Wang, S. Mian Liu, J. Li,
Biochar-based nanocomposites
for the decontamination of wastewater: a review,
Bioresour. Technol., 212 (2016) 318–333.
- G. Tan, W. Sun, Y. Xu, H. Wang, N. Xu, Sorption of mercury (II)
and atrazine by biochar, modified biochars and biochar based
activated carbon in aqueous solution, Bioresour. Technol.,
211 (2016) 727–735.
- L. Qian, W. Zhang, J. Yan, L. Han, Y. Chen, D. Ouyang, M. Chen,
Nanoscale zero-valent iron supported by biochars produced
at different temperatures: synthesis mechanism and effect on
Cr(VI) removal, Environ. Pollut., 223 (2017) 153–160.
- J. Shang, M. Zong, Y. Yu, X. Kong, Q. Du, Q. Liao, Removal
of chromium(VI) from water using nanoscale zerovalent
iron particles supported on herb-residue biochar, J. Environ.
Manage., 197 (2017) 331–337.
- H. Li, Y.Q. Chen, S. Chen, X.L. Wang, S. Guo, Y.F. Qiu, Y. Di
Liu, X.L. Duan, Y.J. Yu, Wheat straw biochar-supported
nanoscale zerovalent iron for removal of trichloroethylene
from groundwater, PLoS One, 12 (2017) 1–13.
- L. Li, J. Hu, X. Shi, M. Fan, J. Luo, X. Wei, Nanoscale zero-valent
metals: a review of synthesis, characterization, and applications
to environmental remediation, Environ. Sci. Pollut. Res.,
23 (2016) 17880–17900.
- J. Shang, J. Pi, M. Zong, Y. Wang, W. Li, Q. Liao, Chromium
removal using magnetic biochar derived
from herb-residue,
J. Taiwan Inst. Chem. Eng., 68 (2016) 289–294.
- Y.P. Sun, X. Qin Li, J. Cao, W. Xian Zhang, H.P. Wang,
Characterization of zero-valent iron nanoparticles, Adv. Colloid
Interface Sci., 120 (2006) 47–56.
- Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou,
A.E. Creamer, Y. Sun, L. Yang, Characterization and
environmental applications of clay-biochar composites, Chem.
Eng. J., 242 (2014) 136–143.
- H. Su, Z. Fang, P.E. Tsang, L. Zheng, W. Cheng, J. Fang,
D. Zhao, Remediation of hexavalent chromium contaminated
soil by biochar-supported zero-valent iron nanoparticles,
J. Hazard. Mater., 318 (2016) 533–540.
- F.E. Soetaredjo, L.K. Ong, D.R. Widagdyo, S. Ismadji,
Investigation of the continuous flow sorption of heavy metals in
a biomass-packed column: revisiting the Thomas design model
for correlation of binary component systems, RSC Adv., 4 (2014)
52856–52870.
- E. Malkoc, Y. Nuhoglu, Removal of Ni(II) ions from aqueous
solutions using waste of tea factory: adsorption on a fixed-bed
column, J. Hazard. Mater., 135 (2006) 328–336.
- M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, M. Arellano, J.R. Robledo-Ortíz, A critical overview
of adsorption models linearization: methodological and
statistical inconsistencies, Sep. Purif. Rev., (2021) 1–15,
doi: 10.1080/15422119.2021.1951757.
- P. Husk, F. Column, X. Zhang, Y. Shang, L. Wang, Y. Song,
R. Han, Comparison of linear and nonlinear regressive analysis
in estimating the Thomas Model parameters for anionic dye
adsorption onto CPB modified peanut husk in fixed-bed
column, Adv. Mater. Res., 781–784 (2013) 2179–2183.
- M. Arellano, A discussion on linear and non-linear forms of
Thomas equation for fixed-bed adsorption column modeling,
Rev. Mex. Ing. Quim., 20 (2021) 875–884.
- L. Han, L. Qian, R. Liu, M. Chen, J. Yan, Q. Hu, Lead adsorption
by biochar under the elevated competition of cadmium and
aluminum, Sci. Rep., 7 (2017) 1–11.
- R. Hana, W. Yu, Z. Xin, W. Yuanfeng, X. Fuling, C. Junmei,
M. Tang, Adsorption of Methylene blue by phoenix tree leaf
powder in a fixed-bed column: experiments and prediction of
breakthrough curves, Desalination, 245 (2009) 284–297.
- G. Yan, T. Viraraghavan, M. Chen, A new model for heavy
metal removal in a biosorption column, Adsorpt. Sci. Technol.,
19 (2001) 25–43.
- Y. Lin, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Decoloration
of acid violet red B by bentonite-supported nanoscale zerovalent
iron: reactivity, characterization, kinetics and reaction
pathway, Appl. Clay Sci., 93–94 (2014) 56–61.
- U.B. Simsek, M. Turabik, Decolorization mechanisms of an
anionic dye by using zero-valent iron nanoparticles: application
of response surface modeling for the optimization process,
Desal. Water Treat., 81 (2017) 303–314.
- A. Ayar, O. Gezici, M. Küçükosmanogˇlu, Adsorptive removal
of Methylene blue and Methyl orange from aqueous media by
carboxylated diaminoethane sporopollenin: on the usability of
an aminocarboxilic acid functionality-bearing solid-stationary
phase in column techniques, J. Hazard. Mater., 146 (2007)
186–193.
- J.L. Gong, Y.L. Zhang, Y. Jiang, G.M. Zeng, Z.H. Cui, K. Liu,
C.H. Deng, Q.Y. Niu, J.H. Deng, S.Y. Huan, Continuous
adsorption of Pb(II) and Methylene blue by engineered
graphite oxide coated sand in fixed-bed column, Appl. Surf.
Sci., 330 (2015) 148–157.
- F.E. Soetaredjo, A. Kurniawan, L.K. Ong, D.R. Widagdyo,
S. Ismadji, Investigation of the continuous flow sorption of
heavy metals in a biomass-packed column: revisiting the
Thomas design model for correlation of binary component
systems, RSC Adv., 4 (2014) 52856–52870.
- V. Parimelazhagan, G. Jeppu, N. Rampal, Continuous fixedbed
column studies on Congo red dye
adsorption-desorption
using free and immobilized Nelumbo nucifera leaf adsorbent,
Polymers, 14 (2022) 54, doi: 10.3390/polym14010054.
- M. Hanbali, H. Holail, H. Hammud, Remediation of lead by
pretreated red algae: adsorption isotherm, kinetic, column
modeling and simulation studies, Green Chem. Lett. Rev.,
7 (2014) 342–358.
- M.R. Samarghandi, M. Hadi, G. McKay, Breakthrough curve
analysis for fixed-bed adsorption of azo dyes using novel pine
cone-derived active carbon, Adsorpt. Sci. Technol., 32 (2014)
791–806.
- H. Patel, Fixed-bed column adsorption study: a comprehensive
review, Appl. Water Sci., 9 (2019), doi:10.1007/s13201-019-0927-7.
- J.L. White, Interpretation of infrared spectra of soil minerals,
Soil Sci., 112 (1971) 22–31.
- U. Adie Gilbert, I. Unuabonah Emmanuel, A. Adeyemo
Adebanjo, G. Adeyemi Olalere, Biosorptive removal of Pb2+
and Cd2+ onto novel biosorbent: defatted Carica papaya
seeds, Biomass Bioenergy, 35 (2011) 2517–2525.
- Mu. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb,
A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri,
A.A. Ghfar, Synthesis and characterization of a new starch/SnO2
nanocomposite for efficient adsorption of toxic Hg2+ metal ion,
Chem. Eng. J., 300 (2016) 306–316.
- S. Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang,
The sorptive and reductive capacities of biochar supported
nanoscaled zero-valent iron (nZVI) in relation to its crystallite
size, Chemosphere, 186 (2017) 495–500.