References

  1. M. Genisoglu, A.Y. Goren, E. Balci, Y.K. Recepoglu, H.E. Ökten, Pomza ve nSDD-Pomza ile Sabit Yataklı Kolon Reaktörde Metilen Mavisi Giderimi: Deneysel ve Modelleme Çalışması, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2019, pp. 298–305. Available at: https://doi.org/10.19113/ sdufenbed.538084
  2. J. Liu, F. Chen, Q. Yao, Y. Sun, W. Huang, R. Wang, B. Yang, W. Li, J. Tian, Application and prospect of graphene and its composites in wastewater treatment, Pol. J. Environ. Stud., 29 (2020) 3965–3974.
  3. M.Y. Kilic, A comparative treatability study for textile wastewater: Agricultural waste adsorbent versus activated carbon, Pol. J. Environ. Stud., 29 (2020) 4131–4137.
  4. V.M. Vučurović, R.N. Razmovski, U.D. Miljić, V.S. Puškaš, Removal of cationic and anionic azo dyes from aqueous solutions by adsorption on maize stem tissue, J. Taiwan Inst. Chem. Eng., 45 (2014) 1700–1708.
  5. A. Mittal, J. Mittal, Chapter 11 – Hen Feather: A Remarkable Adsorbent for Dye Removal, In: Green Chemistry for Dyes Removal from Wastewater: Research Trends and Applications, 2015, pp. 409–457. doi:10.1002/9781118721001. ch11.
  6. L. Wu, X. Liu, G. Lv, R. Zhu, L. Tian, M. Liu, Y. Li, W. Rao, T. Liu, L. Liao, Study on the adsorption properties of Methyl orange by natural one-dimensional nano-mineral materials with different structures, Sci. Rep., 11 (2021) 1–11.
  7. J. Mittal, Recent progress in the synthesis of layered double hydroxides and their application for the adsorptive removal of dyes: a review, J. Environ. Manage., 295 (2021) 113017, doi:10.1016/j.jenvman.2021.113017.
  8. A. Pirkarami, M.E. Olya, Removal of dye from industrial wastewater with an emphasis on improving economic efficiency and degradation mechanism, J. Saudi Chem. Soc., 21 (2017) S179–S186.
  9. V.T. Lam, T.-U.T. Dao, H.-T.T. Nguyen, D. Thi Cam Nguyen, H.T.N. Le, H.T.T. Nguyen, S.T. Do, H.H. Loc, T. Duy Nguyen, Process optimization studies of Congo red dye adsorption onto magnesium aluminium layered double hydroxide using response surface methodology, Pol. J. Environ. Stud., 30 (2020) 679–687.
  10. B. Lellis, C.Z. Fávaro-Polonio, J.A. Pamphile, J.C. Polonio, Effects of textile dyes on health and the environment and bioremediation potential of living organisms, Biotechnol. Res. Innovation., 3 (2019) 275–290.
  11. D.D. Sewu, P. Boakye, S.H. Woo, Highly efficient adsorption of cationic dye by biochar produced with Korean cabbage waste, Bioresour. Technol., 224 (2017) 206–213.
  12. D. Suteu, T. Malutan, D. Bilba, Removal of reactive dye Brilliant Red HE-3B from aqueous solutions by industrial lignin: equilibrium and kinetics modeling, Desalination, 255 (2010) 84–90.
  13. J. Mittal, Permissible synthetic food dyes in India, Resonance, 25 (2020) 567–577.
  14. N. Sahu, S. Rawat, J. Singh, R.R. Karri, S. Lee, J.-S. Choi, J. Reddy Koduru, Process optimization and modeling of Methylene blue adsorption using zero-valent iron nanoparticles synthesized from sweet lime pulp, Appl. Sci., 9 (2019) doi: 10.3390/app9235112.
  15. Y. Feng, H. Zhou, G. Liu, J. Qiao, J. Wang, H. Lu, L. Yang, Y. Wu, Methylene blue adsorption onto swede rape straw (Brassica napus L.) modified by tartaric acid: equilibrium, kinetic and adsorption mechanisms, Bioresour. Technol., 125 (2012) 138–144.
  16. Z.X. Chen, X.Y. Jin, Z. Chen, M. Megharaj, R. Naidu, Removal of Methyl orange from aqueous solution using bentonitesupported nanoscale zero-valent iron, J. Colloid Interface Sci., 363 (2011) 601–607.
  17. M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review, Pol. J. Environ. Stud., 26 (2017) 479–510.
  18. Y. Feng, D.D. Dionysiou, Y. Wu, H. Zhou, L. Xue, S. He, L. Yang, Adsorption of dyestuff from aqueous solutions through oxalic acid-modified swede rape straw: adsorption process and disposal methodology of depleted bioadsorbents, Bioresour. Technol., 138 (2013) 191–197.
  19. M. Inyang, B. Gao, A. Zimmerman, M. Zhang, H. Chen, Synthesis, characterization, and dye sorption ability of carbon nanotube-biochar nanocomposites, Chem. Eng. J., 236 (2014) 39–46.
  20. R. Yousef, H. Qiblawey, Adsorption as a process for produced water treatment: a review, Processes, 8 (2020) 1657, doi: 10.3390/pr8121657.
  21. J.Z. Guo, B. Li, L. Liu, K. Lv, Removal of Methylene blue from aqueous solutions by chemically modified bamboo, Chemosphere, 111 (2014) 225–231.
  22. Prof. Ferhan Çeçen, Dr. Özgür Aktaş, Chapter 1 – Water and Wastewater Treatment: Historical Perspective of Activated Carbon Adsorption and its Integration with Biological Processes, In: Activated Carbon for Water and Wastewater Treatment: Integration of Adsorption and Biological Treatment, Wiley‐VCH Verlag GmbH & Co. KGaA, 2011, pp. 1–12.
  23. A. Bhatnagar, M. Sillanpää, Utilization of agro-industrial and municipal waste materials as potential adsorbents for water treatment — a review, 157 (2010) 277–296.
  24. P.S. Shah, Nanoporous Carbon From Corn Cobs and Its Applications, Ph.D., 2007 MU Dissertations, Chemical Engineering Electronic Theses and Dissertations (MU), 2007, pp. 74–94.
  25. G.Z. Kyzas, M. Kostoglou, Green adsorbents for wastewaters: a critical review, Materials, 7 (2014) 333–364.
  26. B. Li, L. Yang, C. Quan Wang, Q. Pei Zhang, Q. Cheng Liu, Y. Ding Li, R. Xiao, Adsorption of Cd(II) from aqueous solutions by rape straw biochar derived from different modification processes, Chemosphere, 175 (2017) 332–340.
  27. L. Sun, D. Chen, S. Wan, Z. Yu, Performance, kinetics, and equilibrium of Methylene blue adsorption on biochar derived from eucalyptus saw dust modified with citric, tartaric, and acetic acids, Bioresour. Technol., 198 (2015) 300–308.
  28. L.G. da Silva, R. Ruggiero, P. de M. Gontijo, R.B. Pinto, B. Royer, E.C. Lima, T.H.M. Fernandes, T. Calvete, Adsorption of Brilliant Red 2BE dye from water solutions by a chemically modified sugarcane bagasse lignin, Chem. Eng. J., 168 (2011) 620–628.
  29. E.I. Unuabonah, G.U. Adie, L.O. Onah, O.G. Adeyemi, Multistage optimization of the adsorption of Methylene blue dye onto defatted Carica papaya seeds, Chem. Eng. J., 155 (2009) 567–579.
  30. B.H. Hameed, Evaluation of papaya seeds as a novel nonconventional low-cost adsorbent for removal of Methylene blue, J. Hazard. Mater., 162 (2009) 939–944.
  31. X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hu, Y. Gu, Z. Yang, Application of biochar for the removal of pollutants from aqueous solutions, Chemosphere, 125 (2015) 70–85.
  32. W. Xiang, X. Zhang, J. Chen, W. Zou, F. He, X. Hu, D.C.W. Tsang, Y. Sik, B. Gao, Chemosphere biochar technology in wastewater treatment: a critical review, Chemosphere, 252 (2020) 126539, doi:10.1016/j.chemosphere.2020.126539.
  33. L. Han, S. Xue, S. Zhao, J. Yan, L. Qian, M. Chen, Biochar supported nanoscale iron particles for the efficient removal of Methyl orange dye in aqueous solutions, PLoS One, 10 (2015) 1–15.
  34. X. Peng, X. Liu, Y. Zhou, B. Peng, L. Tang, L. Luo, B. Yao, Y. Deng, J. Tang, G. Zeng, New insights into the activity of a biochar supported nanoscale zero-valent iron composite and nanoscale zero valent iron under anaerobic or aerobic conditions, RSC Adv., 7 (2017) 8755–8761.
  35. X. Fei Tan, Y. Guo Liu, Y. Ling Gu, Y. Xu, G. Ming Zeng, X. Jiang Hu, S. Bo Liu, X. Wang, S. Mian Liu, J. Li,
    Biochar-based nanocomposites for the decontamination of wastewater: a review, Bioresour. Technol., 212 (2016) 318–333.
  36. G. Tan, W. Sun, Y. Xu, H. Wang, N. Xu, Sorption of mercury (II) and atrazine by biochar, modified biochars and biochar based activated carbon in aqueous solution, Bioresour. Technol., 211 (2016) 727–735.
  37. L. Qian, W. Zhang, J. Yan, L. Han, Y. Chen, D. Ouyang, M. Chen, Nanoscale zero-valent iron supported by biochars produced at different temperatures: synthesis mechanism and effect on Cr(VI) removal, Environ. Pollut., 223 (2017) 153–160.
  38. J. Shang, M. Zong, Y. Yu, X. Kong, Q. Du, Q. Liao, Removal of chromium(VI) from water using nanoscale zerovalent iron particles supported on herb-residue biochar, J. Environ. Manage., 197 (2017) 331–337.
  39. H. Li, Y.Q. Chen, S. Chen, X.L. Wang, S. Guo, Y.F. Qiu, Y. Di Liu, X.L. Duan, Y.J. Yu, Wheat straw biochar-supported nanoscale zerovalent iron for removal of trichloroethylene from groundwater, PLoS One, 12 (2017) 1–13.
  40. L. Li, J. Hu, X. Shi, M. Fan, J. Luo, X. Wei, Nanoscale zero-valent metals: a review of synthesis, characterization, and applications to environmental remediation, Environ. Sci. Pollut. Res., 23 (2016) 17880–17900.
  41. J. Shang, J. Pi, M. Zong, Y. Wang, W. Li, Q. Liao, Chromium removal using magnetic biochar derived
    from herb-residue, J. Taiwan Inst. Chem. Eng., 68 (2016) 289–294.
  42. Y.P. Sun, X. Qin Li, J. Cao, W. Xian Zhang, H.P. Wang, Characterization of zero-valent iron nanoparticles, Adv. Colloid Interface Sci., 120 (2006) 47–56.
  43. Y. Yao, B. Gao, J. Fang, M. Zhang, H. Chen, Y. Zhou, A.E. Creamer, Y. Sun, L. Yang, Characterization and environmental applications of clay-biochar composites, Chem. Eng. J., 242 (2014) 136–143.
  44. H. Su, Z. Fang, P.E. Tsang, L. Zheng, W. Cheng, J. Fang, D. Zhao, Remediation of hexavalent chromium contaminated soil by biochar-supported zero-valent iron nanoparticles, J. Hazard. Mater., 318 (2016) 533–540.
  45. F.E. Soetaredjo, L.K. Ong, D.R. Widagdyo, S. Ismadji, Investigation of the continuous flow sorption of heavy metals in a biomass-packed column: revisiting the Thomas design model for correlation of binary component systems, RSC Adv., 4 (2014) 52856–52870.
  46. E. Malkoc, Y. Nuhoglu, Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column, J. Hazard. Mater., 135 (2006) 328–336.
  47. M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, M. Arellano, J.R. Robledo-Ortíz, A critical overview of adsorption models linearization: methodological and statistical inconsistencies, Sep. Purif. Rev., (2021) 1–15, doi: 10.1080/15422119.2021.1951757.
  48. P. Husk, F. Column, X. Zhang, Y. Shang, L. Wang, Y. Song, R. Han, Comparison of linear and nonlinear regressive analysis in estimating the Thomas Model parameters for anionic dye adsorption onto CPB modified peanut husk in fixed-bed column, Adv. Mater. Res., 781–784 (2013) 2179–2183.
  49. M. Arellano, A discussion on linear and non-linear forms of Thomas equation for fixed-bed adsorption column modeling, Rev. Mex. Ing. Quim., 20 (2021) 875–884.
  50. L. Han, L. Qian, R. Liu, M. Chen, J. Yan, Q. Hu, Lead adsorption by biochar under the elevated competition of cadmium and aluminum, Sci. Rep., 7 (2017) 1–11.
  51. R. Hana, W. Yu, Z. Xin, W. Yuanfeng, X. Fuling, C. Junmei, M. Tang, Adsorption of Methylene blue by phoenix tree leaf powder in a fixed-bed column: experiments and prediction of breakthrough curves, Desalination, 245 (2009) 284–297.
  52. G. Yan, T. Viraraghavan, M. Chen, A new model for heavy metal removal in a biosorption column, Adsorpt. Sci. Technol., 19 (2001) 25–43.
  53. Y. Lin, Z. Chen, Z. Chen, M. Megharaj, R. Naidu, Decoloration of acid violet red B by bentonite-supported nanoscale zerovalent iron: reactivity, characterization, kinetics and reaction pathway, Appl. Clay Sci., 93–94 (2014) 56–61.
  54. U.B. Simsek, M. Turabik, Decolorization mechanisms of an anionic dye by using zero-valent iron nanoparticles: application of response surface modeling for the optimization process, Desal. Water Treat., 81 (2017) 303–314.
  55. A. Ayar, O. Gezici, M. Küçükosmanogˇlu, Adsorptive removal of Methylene blue and Methyl orange from aqueous media by carboxylated diaminoethane sporopollenin: on the usability of an aminocarboxilic acid functionality-bearing solid-stationary phase in column techniques, J. Hazard. Mater., 146 (2007) 186–193.
  56. J.L. Gong, Y.L. Zhang, Y. Jiang, G.M. Zeng, Z.H. Cui, K. Liu, C.H. Deng, Q.Y. Niu, J.H. Deng, S.Y. Huan, Continuous adsorption of Pb(II) and Methylene blue by engineered graphite oxide coated sand in fixed-bed column, Appl. Surf. Sci., 330 (2015) 148–157.
  57. F.E. Soetaredjo, A. Kurniawan, L.K. Ong, D.R. Widagdyo, S. Ismadji, Investigation of the continuous flow sorption of heavy metals in a biomass-packed column: revisiting the Thomas design model for correlation of binary component systems, RSC Adv., 4 (2014) 52856–52870.
  58. V. Parimelazhagan, G. Jeppu, N. Rampal, Continuous fixedbed column studies on Congo red dye
    adsorption-desorption using free and immobilized Nelumbo nucifera leaf adsorbent, Polymers, 14 (2022) 54, doi: 10.3390/polym14010054.
  59. M. Hanbali, H. Holail, H. Hammud, Remediation of lead by pretreated red algae: adsorption isotherm, kinetic, column modeling and simulation studies, Green Chem. Lett. Rev., 7 (2014) 342–358.
  60. M.R. Samarghandi, M. Hadi, G. McKay, Breakthrough curve analysis for fixed-bed adsorption of azo dyes using novel pine cone-derived active carbon, Adsorpt. Sci. Technol., 32 (2014) 791–806.
  61. H. Patel, Fixed-bed column adsorption study: a comprehensive review, Appl. Water Sci., 9 (2019), doi:10.1007/s13201-019-0927-7.
  62. J.L. White, Interpretation of infrared spectra of soil minerals, Soil Sci., 112 (1971) 22–31.
  63. U. Adie Gilbert, I. Unuabonah Emmanuel, A. Adeyemo Adebanjo, G. Adeyemi Olalere, Biosorptive removal of Pb2+ and Cd2+ onto novel biosorbent: defatted Carica papaya seeds, Biomass Bioenergy, 35 (2011) 2517–2525.
  64. Mu. Naushad, T. Ahamad, G. Sharma, A.H. Al-Muhtaseb, A.B. Albadarin, M.M. Alam, Z.A. ALOthman, S.M. Alshehri, A.A. Ghfar, Synthesis and characterization of a new starch/SnO2 nanocomposite for efficient adsorption of toxic Hg2+ metal ion, Chem. Eng. J., 300 (2016) 306–316.
  65. S. Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang, The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size, Chemosphere, 186 (2017) 495–500.