References
- T.M. Mata, A.A. Martins, N.S. Caetano, Microalgae for biodiesel
production and other applications: a review, Renewable
Sustainable Energy Rev., 14 (2010) 217–232.
- Y. Liang, Producing liquid transportation fuels from
heterotrophic microalgae, Appl. Energy, 104 (2013) 860–868.
- G.H. Huang, F. Chen, D. Wei, X.W. Zhang, G. Chen, Biodiesel
production by microalgal biotechnology, Appl. Energy,
87 (2010) 38–46.
- O. Embury, C.J. Merchant, M.J. Filipiak, A reprocessing for
climate of sea surface temperature from the along-track
scanning radiometers: basis in radiative transfer, Remote Sens.
Environ., 116 (2012) 32–46.
- G. Gouveia, A.C. Oliveira, Microalgae as a raw material for biofuels
production, J. Ind. Microbiol. Biotechnol., 36 (2009) 269–274.
- S. Deshmukh, K. Bala, R. Kumar, Selection of microalgae species
based on their lipid content, fatty acid profile and apparent fuel
properties for biodiesel production, Environ. Sci. Pollut. Res.,
26 (2019) 24462–24473.
- A.P. Dean, D.C. Sigee, J.K. Pittman, Using FTIR spectroscopy
for rapid determination of lipid accumulation in response
to nitrogen limitation in freshwater microalgae, Bioresour.
Technol., 101 (2010) 4499–4507.
- F. Bumbak, S. Cook, V. Zachleder, S. Hauser, K. Kovar,
Best practices in heterotrophic high-cell-density microalgal
processes: achievements, potential and possible limitations,
Appl. Microbiol. Biotechnol., 91 (2011) 31–46.
- O. Perez-Garcia, Y. Bashan, Microalgal Heterotrophic and
Mixotrophic Culturing for Bio-refining: From Metabolic Routes
to Techno-economics, A. Prokop, R. Bajpai, M. Zappi, Eds.,
Algal Biorefineries, Springer, Cham, 2015, pp. 61–131.
- O. Perez-Garcia, F.M. Escalante, L.E. de-Bashan, Y. Bashan,
Heterotrophic cultures of microalgae: metabolism and potential
products, Water Res., 45 (2011) 11–36.
- K. Chojnacka, F.-J. Marquez-Rocha, Kinetic and stoichiometric
relationships of the energy and carbon metabolism in the
culture of microalgae, Biotechnology, 3 (2004) 21–34.
- X. Li, H. Xu, Q. Wu, Large-scale biodiesel production from
microalga Chlorella protothecoides through heterotrophic
cultivation in bioreactors, Biotechnol. Bioeng., 98 (2007) 764–771.
- W. Xiong, X. Li, J. Xiang, Q. Wu, High-density fermentation
of microalga Chlorella protothecoides in bioreactor for microbiodiesel
production, Appl. Microbiol. Biotechnol., 78 (2008)
29–36.
- H. Qiao, G. Wang, Effect of carbon source on growth and lipid
accumulation in Chlorella sorokiniana GXNN01, Chin. J. Oceanol.
Limnol., 27 (2009) 762–768.
- Y. Liang, N. Sarkany, Y. Cui, Biomass and lipid productivities
of Chlorella vulgaris under autotrophic, heterotrophic and
mixotrophic growth conditions, Biotechnol. Lett., 31 (2009)
1043–1049.
- H. Xu, X. Miao, Q. Wu, High quality biodiesel production from
a microalga Chlorella protothecoides by heterotrophic growth in
fermenters, J. Biotechnol., 126 (2006) 499–507.
- J. O’Grady, J.A. Morgan, Heterotrophic growth and lipid
production of Chlorella protothecoides on glicerol, Bioprocess.
Biosyst. Eng., 34 (2011) 121–125.
- W.B. Kong, H. Yang, Y.T. Cao, H. Song, S.F. Hua, C.G. Xia, Effect
of glycerol and glucose on the enhancement of biomass, lipid
and soluble carbohydrate production by Chlorella vulgaris in
mixotrophic culture, Food Technol. Biotechnol., 51 (2013) 62–69.
- SAG, Sammlung von Algenkulturen der Universität Göttingen,
Culture Collection of Algae, Abteilung Experimentelle
Phykologie und Sammlung von Algenkulturen (EPSAG),
Universität Göttingen, Deutschland, 2007. Available at:
http://epsag.uni-goettingen.de
- P. Kalayasiri, N. Jayashoke, K. Krisnangkura, Survey of seed oils
for use as diesel fuels, J. Am. Oil Chem. Soc., 73 (1996) 471–474.
- M.M. Azam, A. Waris, N.M. Nahar, Prospects and potential of
fatty acid methyl esters of some non-traditional seed oils for use
as biodiesel in India, Biomass Bioenergy, 29 (2005) 293–302.
- K. Krisnangkura, A simple method for estimation of cetane
index of vegetable oil methyl esters, J. Am. Oil Chem. Soc.,
63 (1986) 552–553.
- A. Demirbaş, Fuel properties and calculation of higher heating
values of vegetable oils, Fuel, 77 (1998) 1117–1120.
- Association of Official Analytical Chemists (AOAC), Official
Methods of Analysis of the Ass. of Off. Analyt. Chemists Intern.,
16th ed., AOAC: Arlington, VA, USA, 1995.
- L.J.B. Jones Jr., Plant Nutrition Manual, CRC Press, New
York, 1998.
- I. Biancarosa, M. Espe, C.G. Bruckner, S. Heesch, N. Liland,
R. Waagbø, B. Torstensen, E.J. Lock, Amino acid composition,
protein content, and nitrogen-to-protein conversion factors of
21 seaweed species from Norwegian waters, J. Appl. Phycol.,
29 (2017) 1001–1009.
- C. Ciavatta, M. Govi, L.V. Antisari, P. Sequi, Determination
of organic carbon in aqueous extracts of soils and fertilizers,
Commun. Soil Sci. Plant Anal., 22 (1991) 795–807.
- X. Bian, W. Jin, Q. Gu, X. Zhou, Y. Xi, R. Tu, S. Han, G. Xie,
S. Gao, Q. Wang, Subcritical n-hexane/isopropanol extraction
of lipid from wet microalgal pastes of Scenedesmus obliquus,
World J. Microbiol. Biotechnol., 34 (2018) 39, doi: 10.1007/
s11274-018-2421-z.
- K. Stehlik-Barry, A.J. Babinec, Data Analysis with IBM SPSS
Statistics, Packt Publishing Ltd., 2017.
- M. Mondal, A. Ghosh, O.N. Tiwari, K., Gayen, P. Das,
M.K. Mandal, G. Halder, Influence of carbon sources and light
intensity on biomass and lipid production of Chlorella sorokiniana BTA 9031 isolated from coalfield under various nutritional
modes, Energy Convers. Manage., 145 (2017) 247–254.
- N. Shrestha, K.K. Dandinpet, M.A. Schneegurt, Effects of
nitrogen and phosphorus limitation on lipid accumulation
by Chlorella kessleri str. UTEX 263 grown in darkness, J. Appl.
Phycol., 32 (2020) 2795–2805.
- A. Schönborn, N. Ladommatos, J. Williams, R. Allan,
J. Rogerson, The influence of molecular structure of fatty acid
monoalkyl esters on diesel combustion, Combust. Flame,
156 (2009) 1396–1412.