References

  1. E. Boeker, R. van Grondelle, Environmental Physics, John Wiley & Sons, Chichester, 1999.
  2. B. Lipton, The Biology of Belief: Unleashing the Power of Consciousness, Hay Hause, Carsband, 2018.
  3. K.M. Batko, A. Ślęzak, W.M. Bajdur, The role of gravity in the evolution of the concentration field in the electrochemical membrane cell, Entropy, 22 (2020) 680, doi: 10.3390/e22060680.
  4. R. Baker, Membrane Technology and Application, John Wiley & Sons, New York, 2012.
  5. S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser, G.H. Koops, W. Jin, M. Ulbricht, Thinking the future of membranes: perspectives for advanced and new membrane materials and manufacturing processes,
    J. Membr. Sci., 598 (2020) 117761, doi: 10.1016/j.memsci.2019.117761.
  6. D. Lasrado, S. Ahankari, K. Kar, Nanocellulose‐based polymer composites for energy applications—a review, J. Appl. Polym. Sci., 137 (2020) 48959, doi: 10.1002/app.48959.
  7. T.P.N. Nguyen, B.-M. Jun, J. Hwa Lee, Y.-N. Kwon, Comparison of integrally asymmetric and thin film composite structures for a desirable fashion of forward osmosis membranes, J. Membr. Sci., 495 (2015) 457–470.
  8. T.P.N. Nguyen, B.-M. Jun, Y.-N. Kwon, The chlorination mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward osmosis membrane, J. Membr. Sci., 523 (2017) 111–121.
  9. Y. Seo, Y.-C. Jung, M.-S. Park, D.-W. Kim, Solid polymer electrolyte supported by porous polymer membrane for allsolid- state lithium batteries, J. Membr. Sci., 603 (2020) 117995, doi: 10.1016/j.memsci.2020.117995.
  10. Y. Demirel, Non-equilibrium Thermodynamics: Transport and Rate Processes in Physical and Biological System, Amsterdam, Elsevier, 2002.
  11. D. Kondepudi, Introduction to Modern Thermodynamics, John Wiley & Sons, Chichester, 2008.
  12. A. Katchalsky, P.F. Curran, Non-equilibrium Thermodynamics in Biophysics, Harvard, Cambridge, 1965.
  13. Y. Demirel, S.I. Sandler, Thermodynamics and bioenergetics, Biophys. Chem., 97 (2002) 87–111.
  14. M. Delmotte, J. Chanu, Non-Equilibrium Thermodynamics and Membrane Potential Measurement in Biology,
    G. Millazzo, Ed., Topics Bioelectrochemistry and Bioenergetics, John Wiley & Sons, Chichester, 1979,
    pp. 307–359.
  15. A. Ślęzak, I. Ślęzak-Prochazka, S. Grzegorczyn, J. Jasik-Ślęzak, Evaluation of S-entropy production in a single-membrane system in concentration polarization conditions, Transp. Porous Media, 116 (2017) 941–957.
  16. A. Ślęzak, S. Grzegorczyn, K.M. Batko, W. Pilis, R. Biczak, Membrane transport in concentration polarization conditions: evaluation of S-entropy production for ternary non-electrolyte solutions, J. Non-Equilib. Thermodyn., 45 (2020) 385–399.
  17. A. Ślęzak, Irreversible thermodynamic model equations of the transport across a horizontally mounted membrane, Biophys. Chem., 34 (1989) 91–102.
  18. A. Ślęzak, J. Jasik-Ślęzak, S. Grzegorczyn, I. Ślęzak-Prochazka, Nonlinear effects in osmotic volume flows of electrolyte solutions through double-membrane system, Transp. Porous Media, 92 (2012) 337–356.
  19. A. Ślęzak, J. Jasik-Ślęzak, J. Wąsik, A. Sieroń, W. Pilis, Volume osmotic flows of non-homogeneous electrolyte solutions through horizontally mounted membrane, Gen. Physiol. Biophys., 21 (2002) 115–146.
  20. A. Ślęzak, S. Grzegorczyn, K.M. Batko, W.M. Bajdur, M. Włodarczyk-Makuła, Applicability of the Lr form of the Kedem–Katchalsky–Peusner equations for membrane transport in water purification technology, Desal. Water Treat., 202 (2020) 48–60.
  21. K.M. Batko, A. Ślęzak, Evaluation of the global S-entropy production in membrane transport of aqueous solutions of hydrochloric acid and ammonia, Entropy, 22 (2020) 1021, doi: 10.3390/e22091021.
  22. A. Ślęzak, S. Grzegorczyn, J. Jasik-Ślęzak, K. Michalska- Małecka, Natural convection as an asymmetrical factor of the transport through porous membrane, Transp. Porous Media, 84 (2010) 685–698.
  23. K. Dworecki, Interferometric investigation of near-membrane diffusion layers, J. Biol. Phys., 21 (1995) 37–49.
  24. K. Dworecki, S. Wąsik, A. Ślęzak, Temporal and spatial structure of the concentration boundary layers in a membrane system, Physica A, 326 (2003) 360–369.
  25. K. Dworecki, T. Kosztołowicz, St. Mrówczyński, S. Wąsik, Time evolution of near membrane layers, Eur. J. Phys. E, 3 (2000) 389–394.
  26. K. Dworecki, A. Ślęzak, B. Ornal-Wąsik, S. Wąsik, Effect of hydrodynamic instabilities on solute transport in a membrane system, J. Membr. Sci., 265 (2005) 94–100.
  27. S. Grzegorczyn, A. Ślęzak, K. Michalska-Małecka, I. Ślęzak-Prochazka, Conditions of hydrodynamic instability appearance in fluid thin layers with changes in time thickness and density gradient, J. Non-Equilib. Thermodyn., 37 (2012) 77–99.
  28. B.A. Puthenveettil, J.H. Arakeri, Plume structure in high-Rayleigh-number convection, J. Fluid Mech., 542 (2005) 217–249.
  29. B.A. Puthenveettil, G.S. Gunasegarane, Y.K. Agrawal, D. Schmeling, J. Bosbach, J.H. Arakeri, Length of near-wall plumes in turbulent convection, J. Fluid Mech., 685 (2011) 335–364.
  30. K. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn, A. Ślęzak, Membrane transport in concentration polarization conditions: network thermodynamics model equations, J. Porous Media, 17 (2014) 573–586.
  31. H. Klinkman, M. Holtz, W. Willgerodt, G. Wilke, D. Schoenfelder, Nephrophan® – Eine Neue Dialysemembran, Z. Urol. Nephrol., 62 (1969) 285–292.
  32. P.J. Durrant, B. Durrant, Introduction to Advanced Inorganic Chemistry, John Wiley and Sons, New York, 1962.
  33. A. Ślęzak, K. Dworecki, J. Jasik-Ślęzak, J. Wąsik, Method to determine the critical concentration Rayleigh number in isothermal passive membrane transport processes, Desalination, 168 (2004) 397–412.
  34. G. Lebon, D. Jou, J. Casas-Vasquez, Understanding Nonequilibrium Thermodynamics. Foundations, Applications, Frontiers, Springer-Verlag, Berlin-Heidelberg, 2008.
  35. T. Lohaus, N. Herkenhoff, R. Shankar, M. Wessling, Feed flow patterns of combined Rayleigh-Bénard convection and membrane permeation, J. Membr. Sci., 549 (2018) 60–66.