References
- E. Boeker, R. van Grondelle, Environmental Physics, John Wiley
& Sons, Chichester, 1999.
- B. Lipton, The Biology of Belief: Unleashing the Power of
Consciousness, Hay Hause, Carsband, 2018.
- K.M. Batko, A. Ślęzak, W.M. Bajdur, The role of gravity in
the evolution of the concentration field in the electrochemical
membrane cell, Entropy, 22 (2020) 680, doi: 10.3390/e22060680.
- R. Baker, Membrane Technology and Application, John Wiley &
Sons, New York, 2012.
- S.P. Nunes, P.Z. Culfaz-Emecen, G.Z. Ramon, T. Visser,
G.H. Koops, W. Jin, M. Ulbricht, Thinking the future of
membranes: perspectives for advanced and new membrane
materials and manufacturing processes,
J. Membr. Sci.,
598 (2020) 117761, doi: 10.1016/j.memsci.2019.117761.
- D. Lasrado, S. Ahankari, K. Kar, Nanocellulose‐based polymer
composites for energy applications—a review, J. Appl. Polym.
Sci., 137 (2020) 48959, doi: 10.1002/app.48959.
- T.P.N. Nguyen, B.-M. Jun, J. Hwa Lee, Y.-N. Kwon, Comparison
of integrally asymmetric and thin film composite structures for
a desirable fashion of forward osmosis membranes, J. Membr.
Sci., 495 (2015) 457–470.
- T.P.N. Nguyen, B.-M. Jun, Y.-N. Kwon, The chlorination
mechanism of integrally asymmetric cellulose triacetate (CTA)-based and thin film composite polyamide-based forward
osmosis membrane, J. Membr. Sci., 523 (2017) 111–121.
- Y. Seo, Y.-C. Jung, M.-S. Park, D.-W. Kim, Solid polymer
electrolyte supported by porous polymer membrane for allsolid-
state lithium batteries, J. Membr. Sci., 603 (2020) 117995,
doi: 10.1016/j.memsci.2020.117995.
- Y. Demirel, Non-equilibrium Thermodynamics: Transport and
Rate Processes in Physical and Biological System, Amsterdam,
Elsevier, 2002.
- D. Kondepudi, Introduction to Modern Thermodynamics, John
Wiley & Sons, Chichester, 2008.
- A. Katchalsky, P.F. Curran, Non-equilibrium Thermodynamics
in Biophysics, Harvard, Cambridge, 1965.
- Y. Demirel, S.I. Sandler, Thermodynamics and bioenergetics,
Biophys. Chem., 97 (2002) 87–111.
- M. Delmotte, J. Chanu, Non-Equilibrium Thermodynamics and
Membrane Potential Measurement in Biology,
G. Millazzo, Ed.,
Topics Bioelectrochemistry and Bioenergetics, John Wiley &
Sons, Chichester, 1979,
pp. 307–359.
- A. Ślęzak, I. Ślęzak-Prochazka, S. Grzegorczyn, J. Jasik-Ślęzak,
Evaluation of S-entropy production in a single-membrane
system in concentration polarization conditions, Transp. Porous
Media, 116 (2017) 941–957.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, W. Pilis, R. Biczak,
Membrane transport in concentration polarization conditions:
evaluation of S-entropy production for ternary non-electrolyte
solutions, J. Non-Equilib. Thermodyn., 45 (2020) 385–399.
- A. Ślęzak, Irreversible thermodynamic model equations of the
transport across a horizontally mounted membrane, Biophys.
Chem., 34 (1989) 91–102.
- A. Ślęzak, J. Jasik-Ślęzak, S. Grzegorczyn, I. Ślęzak-Prochazka,
Nonlinear effects in osmotic volume flows of electrolyte
solutions through double-membrane system, Transp. Porous
Media, 92 (2012) 337–356.
- A. Ślęzak, J. Jasik-Ślęzak, J. Wąsik, A. Sieroń, W. Pilis, Volume
osmotic flows of non-homogeneous electrolyte solutions
through horizontally mounted membrane, Gen. Physiol.
Biophys., 21 (2002) 115–146.
- A. Ślęzak, S. Grzegorczyn, K.M. Batko, W.M. Bajdur,
M. Włodarczyk-Makuła, Applicability of the Lr form of the
Kedem–Katchalsky–Peusner equations for membrane transport
in water purification technology, Desal. Water Treat., 202 (2020)
48–60.
- K.M. Batko, A. Ślęzak, Evaluation of the global S-entropy
production in membrane transport of aqueous solutions of
hydrochloric acid and ammonia, Entropy, 22 (2020) 1021,
doi: 10.3390/e22091021.
- A. Ślęzak, S. Grzegorczyn, J. Jasik-Ślęzak, K. Michalska-
Małecka, Natural convection as an asymmetrical factor of the
transport through porous membrane, Transp. Porous Media,
84 (2010) 685–698.
- K. Dworecki, Interferometric investigation of near-membrane
diffusion layers, J. Biol. Phys., 21 (1995) 37–49.
- K. Dworecki, S. Wąsik, A. Ślęzak, Temporal and spatial structure
of the concentration boundary layers in a membrane system,
Physica A, 326 (2003) 360–369.
- K. Dworecki, T. Kosztołowicz, St. Mrówczyński, S. Wąsik, Time
evolution of near membrane layers, Eur. J. Phys. E, 3 (2000)
389–394.
- K. Dworecki, A. Ślęzak, B. Ornal-Wąsik, S. Wąsik, Effect of
hydrodynamic instabilities on solute transport in a membrane
system, J. Membr. Sci., 265 (2005) 94–100.
- S. Grzegorczyn, A. Ślęzak, K. Michalska-Małecka, I. Ślęzak-Prochazka, Conditions of hydrodynamic instability appearance
in fluid thin layers with changes in time thickness and density
gradient, J. Non-Equilib. Thermodyn., 37 (2012) 77–99.
- B.A. Puthenveettil, J.H. Arakeri, Plume structure in high-Rayleigh-number convection, J. Fluid Mech., 542 (2005) 217–249.
- B.A. Puthenveettil, G.S. Gunasegarane, Y.K. Agrawal,
D. Schmeling, J. Bosbach, J.H. Arakeri, Length of near-wall
plumes in turbulent convection, J. Fluid Mech., 685 (2011)
335–364.
- K. Batko, I. Ślęzak-Prochazka, S. Grzegorczyn, A. Ślęzak,
Membrane transport in concentration polarization conditions:
network thermodynamics model equations, J. Porous Media,
17 (2014) 573–586.
- H. Klinkman, M. Holtz, W. Willgerodt, G. Wilke, D. Schoenfelder,
Nephrophan® – Eine Neue Dialysemembran, Z. Urol. Nephrol.,
62 (1969) 285–292.
- P.J. Durrant, B. Durrant, Introduction to Advanced Inorganic
Chemistry, John Wiley and Sons, New York, 1962.
- A. Ślęzak, K. Dworecki, J. Jasik-Ślęzak, J. Wąsik, Method
to determine the critical concentration Rayleigh number in
isothermal passive membrane transport processes, Desalination,
168 (2004) 397–412.
- G. Lebon, D. Jou, J. Casas-Vasquez, Understanding Nonequilibrium
Thermodynamics. Foundations, Applications,
Frontiers, Springer-Verlag, Berlin-Heidelberg, 2008.
- T. Lohaus, N. Herkenhoff, R. Shankar, M. Wessling, Feed
flow patterns of combined Rayleigh-Bénard convection and
membrane permeation, J. Membr. Sci., 549 (2018) 60–66.