References
- D. Pradhan, L.B. Sukla, R. Acevedo, Microalgae for future
biotechnology industries, Inglomayor, 13 (2017) 40–55.
- P. Feng, Z. Deng, Z. Hu, L. Fan, Lipid accumulation and growth
of Chlorella zofingiensis in flat plate photobioreactors outdoors,
Bioresour. Technol., 102 (2011) 10577–10584.
- C.H. Tan, X. Tan, S. Ho, S.S. Lam, P.L. Show, T.H.P. Nguyen,
Conceptual design of a hybrid thin layer cascade photobioreactor
for microalgal biodiesel synthesis, Int. J. Energy Res., 44 (2020)
9757–9771.
- S. Azizi, B. Bayat, H. Tayebati, A. Hashemi, F. Pajoum Shariati,
Nitrate and phosphate removal from treated wastewater by
Chlorella vulgaris under various light regimes within membrane
flat plate photobioreactor, Environ. Prog. Sustainable Energy,
40 (2021) e13519, doi: 10.1002/ep.13519.
- X.B. Tan, L. Bin Yang, Y.L. Zhang, F.C. Zhao, H.Q. Chu, J. Guo,
Chlorella pyrenoidosa cultivation in outdoors using the diluted
anaerobically digested activated sludge, Bioresour. Technol.,
198 (2015) 340–350.
- L. Moreno-Garcia, K. Adjallé, S. Barnabé, G.S.V. Raghavan,
Microalgae biomass production for a biorefinery system:
recent advances and the way towards sustainability, Renewable
Sustainable Energy Rev., 76 (2017) 493–506.
- S. Hindersin, M. Leupold, M. Kerner, D. Hanelt, Key
parameters for outdoor biomass production of Scenedesmus
obliquus in solar tracked photobioreactors, J. Appl. Phycol.,
26 (2014) 2315–2325.
- J. Cabello, A. Toledo-Cervantes, L. Sánchez, S. Revah,
M. Morales, Effect of the temperature, pH and irradiance on
the photosynthetic activity by Scenedesmus obtusiusculus under
nitrogen replete and deplete conditions, Bioresour. Technol.,
181 (2015) 128–135.
- C. González-Fernández, A. Mahdy, I. Ballesteros, M. Ballesteros,
Impact of temperature and photoperiod on anaerobic
biodegradability of microalgae grown in urban wastewater, Int.
Biodeterior. Biodegrad., 106 (2016) 16–23.
- K. Li, Q. Liu, F. Fang, R. Luo, Q. Lu, W. Zhou, S. Huo,
P. Cheng, J. Liu, M. Addy, P. Chen, D. Chen, R. Ruan,
Microalgae-based wastewater treatment for nutrients recovery:
a review, Bioresour. Technol., 291 (2019) 121934, doi: 10.1016/j.
biortech.2019.121934.
- S.K. Wang, X. Wang, J. Miao, Y.T. Tian, Tofu whey wastewater
is a promising basal medium for microalgae culture, Bioresour.
Technol., 253 (2018) 79–84.
- R. Kothari, R. Prasad, V. Kumar, D.P. Singh, Production of
biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater, Bioresour. Technol.,
144 (2013) 499–503.
- M. Foix-Cablé, R.A. Darmawan, M. Sahnoun, S. Hindersin,
M. Kerner, M. Kraume, Nutrient recycling from the effluent
of a decentralized anaerobic membrane bioreactor (AnMBR)
treating fresh domestic wastewater by cultivation of the
microalgae Acutodesmus obliquus, Water Sci. Technol., 78 (2018)
1556–1565.
- K. Larsdotter, Wastewater treatment with microalgae – a
literature review, Vatten, 62 (2006) 31–38.
- M.M. Pacheco, M. Hoeltz, T.R. Bjerk, M.P. de Souza,
L.F.F. da Silva, P.D. Gressler, M.S.A. Moraes, E.A. Lobo,
R.C.S. Schneider, Evaluation of microalgae growth in a mixedtype
photobioreactor system for the phycoremediation of
wastewater, J. Chem. Technol. Biotechnol., 94 (2019) 3102–3110.
- B.S.M. Sturm, S.L. Lamer, An energy evaluation of coupling
nutrient removal from wastewater with algal biomass
production, Appl. Energy, 88 (2011) 3499–3506.
- B. Sialve, N. Bernet, O. Bernard, Anaerobic digestion of
microalgae as a necessary step to make microalgal biodiesel
sustainable, Biotechnol. Adv., 27 (2009) 409–416.
- L. Brennan, P. Owende, Biofuels from microalgae – a review
of technologies for production, processing, and extractions of
biofuels and co-products, Renewable Sustainable Energy Rev.,
14 (2010) 557–577.
- M. Jochum, L.P. Moncayo, Y.-K. Jo, Microalgal cultivation for
biofertilization in rice plants using a vertical
semi-closed airlift
photobioreactor, PloS One, 13 (2018) e0203456.
- S.M. Abdo, S.A.M. Amer, H.M. Ahmed, R.H. Mahmoud,
A.A. Salama, M.A.A. Kutkat, Microalgae biomass application
in commercial broilers nutrition and their efficacy against
challenge with epidemic newcastle disease virus in Egypt,
J. World’s Poultry Res., 9 (2019) 98–108.
- F. Rezvani, M.-H. Sarrafzadeh, S.-H. Seo, H.-M. Oh, Optimal
strategies for bioremediation
of nitrate-contaminated
groundwater and microalgae biomass production, Environ.
Sci. Pollut. Res., 25 (2018) 27471–27482.
- J.B. García-Martínez, N.A. Urbina-Suarez, A. Zuorro,
A.F. Barajas-Solano, V. Kafarov, Fisheries wastewater as a
sustainable media for the production of algae-based products,
Chem. Eng., 76 (2019) 1339–1344.
- T.E. Elmansour, L. Mandi, A. Ahmali, A. Elghadraoui, F. Aziz,
A. Hejjaj, M. Del Bubba, N. Ouazzani, Effect of polyphenols on
activated sludge biomass during the treatment of highly diluted
olive mill wastewaters: biomass dynamics and purifying
performances, Water Sci. Technol., 82 (2020) 1416–1429.
- J. Rodier, C. Bazin, J.P. Broutin, P. Chambon, H. Champsaur,
L. Rodi, Water Analysis, 9th ed., Dunod, Paris, France, 2009,
p. 1579.
- X. Ji, J. Cheng, D. Gong, X. Zhao, Y. Qi, Y. Su, W. Ma, The effect
of NaCl stress on photosynthetic efficiency and lipid production
in freshwater microalga—Scenedesmus obliquus XJ002, Sci. Total
Environ., 633 (2018) 593–599.
- L.E. de-Bashan, A. Trejo, V.A.R. Huss, J.-P. Hernandez, Y. Bashan,
Chlorella sorokiniana UTEX 2805, a heat and intense, sunlighttolerant
microalga with potential for removing ammonium
from wastewater, Bioresour. Technol., 99 (2008) 4980–4989.
- M. Helamieh, A. Gebhardt, M. Reich, F. Kuhn, M. Kerner,
K. Kümmerer, Growth and fatty acid composition of Acutodesmus
obliquus under different light spectra and temperatures,
Lipids, 56 (2021) 485–498.
- N. Osterthun, M. Helamieh, D. Berends, N. Neugebohrn,
K. Gehrke, M. Vehse, M. Kerner, C. Agert, Influence of spectrally
selective solar cells on microalgae growth in photo-bioreactors,
AIP Conf. Proc., 2361 (2021) 070001, doi: 10.1063/5.0054814.
- I. Krohn-Molt, B. Wemheuer, M. Alawi, A. Poehlein, S. Güllert,
C. Schmeisser, A. Pommerening-Röser,
A. Grundhoff, R. Daniel,
D. Hanelt, W.R. Streit, Metagenome survey of a multispecies and
alga-associated biofilm revealed key elements of bacterial-algal
interactions in photobioreactors, Appl. Environ. Microbiol.,
79 (2013) 6196–6206.
- I. Krohn-Molt, M. Alawi, K.U. Förstner, A. Wiegandt,
L. Burkhardt, D. Indenbirken, M. Thieß, A. Grundhoff,
J. Kehr, A. Tholey, W.R. Streit, Insights into microalga and
bacteria interactions of selected phycosphere biofilms using
metagenomic, transcriptomic, and proteomic approaches,
Front. Microbiol., 8 (2017) 1941, doi:10.3389/fmicb.2017.01941.
- H.A. McManus, L.A. Lewis, Molecular phylogenetic
relationships in the freshwater family hydrodictyaceae
(Sphaeropleales, Chlorophycea), with an emphasis on Pediastrum
Duplex, J. Phycol., 47 (2011) 152–163.
- F.A. AlMomani, B. Örmeci, Performance of Chlorella vulgaris,
Neochloris oleoabundans, and mixed indigenous microalgae for
treatment of primary effluent, secondary effluent and centrate,
Ecol. Eng., 95 (2016) 280–289.
- E.W. Becker, L.V. Venkataraman, Production and utilization of
the blue-green alga Spirulina in India, Biomass, 4 (1984) 105–125.
- R.A. Soni, K. Sudhakar, R.S. Rana, Comparative study on the
growth performance of Spirulina platensis on modifying culture
media, Energy Rep., 5 (2019) 327–336.
- A. Sukanya, R. Meena, A.D. Ravindran, Cultivation of Spirulina using low-cost organic medium and preparation of phycocyanin
based ice creams, Int. J. Curr. Microbiol. Appl. Sci., 9 (2020)
392–399.
- S. Janarthanan, Effect of pH on Arthrospira platensis production,
Alochana Chakra J., 6 (2020) 2297–2305.
- C.E. Quiroz Arita, C. Peebles, T.H. Bradley, Scalability of
combining microalgae-based biofuels with wastewater facilities:
a review, Algal Res., 9 (2015) 160–169.
- S. Tsujimura, K. Ishikawa, H. Tsukada, Effect of temperature on
growth of the cyanobacterium Aphanizomenon flos-aquae in Lake
Biwa and Lake Yogo, Phycol. Res., 49 (2001) 275–280.
- V. Üveges, K. Tapolczai, L. Krienitz, J. Padisák, Photosynthetic
Characteristics and Physiological Plasticity of an Aphanizomenon
flos-aquae (Cyanobacteria, Nostocaceae) Winter Bloom in a
Deep Oligo-Mesotrophic Lake (Lake Stechlin, Germany),
Hydrobiologia, Springer, 2012, pp. 263–272.
- A. Włodarczyk, T.T. Selão, B. Norling, P.J. Nixon, Newly
discovered Synechococcus sp. PCC 11901 is a robust
cyanobacterial strain for high biomass production, Commun.
Biol., 3 (2020) 1–14.
- S. Abu-Ghosh, Z. Dubinsky, D. Iluz, Acclimation of
thermotolerant algae to light and temperature interaction1,
J. Phycol., 56 (2020) 662–670.
- G. Kishore, A.D. Kadam, A. Daverey, K. Arunachalam, Isolation
and evaluation of cultivation conditions of Euglena sp. from
Western Himalaya for biofuel production, Biofuels, 9 (2018)
221–228.
- Y. Kitaya, H. Azuma, M. Kiyota, Effects of temperature, CO2/O2
concentrations and light intensity on cellular multiplication
of microalgae, Euglena gracilis, Adv. Space Res., 35 (2005)
1584–1588.
- Z. Zhang, Y. Tan, W. Wang, W. Bai, J. Fan, J. Huang, M. Wan,
Y. Li, Efficient heterotrophic cultivation of Chlamydomonas
reinhardtii, J. Appl. Phycol., 31 (2019) 1545–1554.
- B.R. Lopez, O.A. Palacios, Y. Bashan, F.E. Hernández-Sandoval,
L.E. de-Bashan, Riboflavin and lumichrome exuded by the
bacterium Azospirillum brasilense promote growth and changes
in metabolites in Chlorella sorokiniana under autotrophic
conditions, Algal Res., 44 (2019) 101696, doi: 10.1016/j.
algal.2019.101696.
- J. Zheng, B. Wang, Exploitation of Chlorella pyrenoidosa’s Biomass Energy by Aquiculture Wastewater, International
Conference on Challenges in Environmental Science and
Computer Engineering, CESCE 2010, IEEE, 2010, pp. 488–491.
- L.V. Richter, C.B. Mansfeldt, M.M. Kuan, A.E. Cesare,
S.T. Menefee, R.E. Richardson, B.A. Ahner, Altered microbiome
leads to significant phenotypic and transcriptomic differences
in a lipid accumulating chlorophyte, Environ. Sci. Technol.,
52 (2018) 6854–6863.
- A. Chan, H. Salsali, E. McBean, Nutrient removal (nitrogen
and phosphorous) in secondary effluent from a wastewater
treatment plant by microalgae, Can. J. Civ. Eng., 41 (2014)
118–124.
- S. Huo, J. Liu, M. Addy, P. Chen, D. Necas, P. Cheng, K. Li,
H. Chai, Y. Liu, R. Ruan, The influence of microalgae on
vegetable production and nutrient removal in greenhouse
hydroponics, J. Cleaner Prod., 243 (2020) 118563, doi: 10.1016/j.jclepro.2019.118563.
- M. Erkelens, A.S. Ball, D.M. Lewis, The influences of the recycle
process on the bacterial community in a pilot scale microalgae
raceway pond, Bioresour. Technol., 157 (2014) 364–367.
- F. Goecke, V. Thiel, J. Wiese, A. Labes, J.F. Imhoff, Algae as an
important environment for bacteria – phylogenetic relationships
among new bacterial species isolated from algae, Phycologia,
52 (2013) 14–24.
- J.J. Morris, R. Kirkegaard, M.J. Szul, Z.I. Johnson, E.R. Zinser,
Facilitation of robust growth of Prochlorococcus colonies and
dilute liquid cultures by “helper” heterotrophic bacteria, Appl.
Environ. Microbiol., 74 (2008) 4530–4534.
- D.M. Mahapatra, H.N. Chanakya, T.V. Ramachandra,
Bioremediation and lipid synthesis through mixotrophic
algal consortia in municipal wastewater, Bioresour. Technol.,
168 (2014) 142–150.
- D. Singh, L. Nedbal, O. Ebenhöh, Modelling phosphorus
uptake in microalgae, Biochem. Soc. Trans., 46 (2018)
483–490.
- M. Watanabe, K. Kohata, M. Kunugi, Phosphate accumulation
and metabolism by Heterosigma akashiwo (Raphidophyceae)
during diel vertical migration in a stratified microcosm,
J. Phycol., 24 (1988) 22–28.
- S. Van Den Hende, V. Beelen, G. Bore, N. Boon, H. Vervaeren,
Up-scaling aquaculture wastewater treatment by microalgal
bacterial flocs: from lab reactors to an outdoor raceway pond,
Bioresour. Technol., 159 (2014) 342–354.
- Z.J. Mudryk, P. Perliński, J. Antonowicz, D. Robak, Number
of bacteria decomposing organic phosphorus compounds
and phosphatase activity in the sand of two marine beaches
differing in the level of anthropopressure, Mar. Pollut. Bull.,
101 (2015) 566–574.
- B.N. Uba, Microbiological characteristics of wastewaters from
a nitrogen- and phosphate-based fertilizer factory, Bioresour.
Technol., 51 (1995) 143–152.
- G.W. Fuhs, M. Chen, Microbiological basis of phosphate
removal in the activated sludge process for the treatment of
wastewater, Microb. Ecol., 2 (1975) 119–138.
- G. Gutzeit, D. Lorch, A. Weber, M. Engels, U. Neis, Bioflocculent
algal-bacterial biomass improves low-cost wastewater
treatment, Water Sci. Technol., 52 (2005) 9–18.
- N.D. Manser, M. Wang, S.J. Ergas, J.R. Mihelcic, A. Mulder,
J. Van De Vossenberg, J.B. Van Lier, P. Van Der Steen, Biological
nitrogen removal in a photosequencing batch reactor with
an algal-nitrifying bacterial consortium and anammox
granules, Environ. Sci. Technol. Lett., 3 (2016) 175–179.
- H. Peng, L.E. de-Bashan, B.T. Higgins, Comparison of
algae growth and symbiotic mechanisms in the presence
of plant growth promoting bacteria and non-plant growth
promoting bacteria, Algal Res., 53 (2021) 102156, doi: 10.1016/j.
algal.2020.102156.
- J.R. Yang, Y. Wang, H. Chen, Y.K. Lyu, Ammonium removal
characteristics of an acid-resistant bacterium Acinetobacter sp.
JR1 from pharmaceutical wastewater capable of heterotrophic
nitrification-aerobic denitrification, Bioresour. Technol.,
274 (2019) 56–64.
- F. Jeanmougin, J.D. Thompson, M. Gouy, D.G. Higgins,
T.J. Gibson, Multiple sequence alignment with Clustal X,
Trends Biochem. Sci., 23 (1998) 403–405.
- K. Tamura, J. Dudley, M. Nei, S. Kumar, MEGA4: molecular
evolutionary genetics analysis (MEGA) software version 4.0,
Mol. Biol. Evol., 24 (2007) 1596–1599.
- N. Essoussi, K. Boujenfa, M. Limam, A comparison of MSA
tools, Bioinformation, 2 (2008) 452–455.
- T. Li, Y. Zheng, L. Yu, S. Chen, High productivity cultivation
of a heat-resistant microalga Chlorella sorokiniana for biofuel
production, Bioresour. Technol., 131 (2013) 60–67.
- P. Varshney, J. Beardall, S. Bhattacharya, P.P. Wangikar, Isolation
and biochemical characterisation of two thermophilic green
algal species-Asterarcys quadricellulare and Chlorella sorokiniana,
which are tolerant to high levels of carbon dioxide and nitric
oxide, Algal Res., 30 (2018) 28–37.
- S. Suthar, R. Verma, Production of Chlorella vulgaris under
varying nutrient and abiotic conditions: a potential microalga
for bioenergy feedstock, Process Saf. Environ. Prot., 113 (2018)
141–148.
- B. Ievina, F. Romagnoli, Potential of Chlorella species as
feedstock for bioenergy production: a review, Environ. Clim.
Technol., 24 (2020) 203–220.
- P.M. Slegers, M.B. Lösing, R.H. Wijffels, G. van Straten,
A.J.B. van Boxtel, Scenario evaluation of open pond microalgae
production, Algal Res., 2 (2013) 358–368.
- P. Dechatiwongse, S. Srisamai, G. Maitland, K. Hellgardt, Effects
of light and temperature on the photoautotrophic growth and
photoinhibition of nitrogen-fixing cyanobacterium Cyanothece sp. ATCC 51142, Algal Res., 5 (2014) 103–111.
- P. Varshney, P. Mikulic, A. Vonshak, J. Beardall, P.P. Wangikar,
Extremophilic micro-algae and their potential contribution
in biotechnology, Bioresour. Technol., 184 (2015) 363–372.
- E. Lee, M. Jalalizadeh, Q. Zhang, Growth kinetic models for
microalgae cultivation: a review, Algal Res., 12 (2015) 497–512.