References

  1. FAO, 2018. Available at: http://www.fao.org/home/en/ (Accessed 20.04.2021).
  2. Compendium of Guidelines for Tea (Camellia sinensis) (Former ETC Document), Tea & Herbal Infusion Europe, Formerly: European Tea Committee (ETC) and European Herbal Infusions Association (EHIA). Available at: http://www. thie-online.eu/fileadmin/inhalte/Publications/Tea/2016 19_ISSUE_4_Compendium_of_Guidelines_for_Tea.pdf (Accessed 20.04.2021).
  3. A. Moreda-Piñeiro, A. Fisher, S.J. Hill, The classification of tea according to region of origin using pattern recognition techniques and trace metal data, J. Food Compos. Anal., 16 (2003) 195–211.
  4. T.S. Pilgrim, R. John Watling, K. Grice, Application of trace element and stable isotope signatures to determine the provenance of tea (Camellia sinensis) samples, Food Chem., 118 (2010) 921–926.
  5. L. Wang., K. Wei, H. Cheng, W. He, X. Li, W. Gong, Geographical tracing of Xihu Longjing tea using high performance liquid chromatography, Food Chem., 146 (2014) 98–103.
  6. G. Ma, Y. Zhang, J. Zhang, G. Wang, L. Chen, M. Zhang, T. Liu, X. Liu, C. Lu, Determining the geographical origin of Chinese green tea by linear discriminant analysis of trace metals and rare earth elements: taking Dongting Biluochun as an example, Food Control, 59 (2016) 714–720.
  7. Z. Kovács, I. Dalamdi, L. Lukács, L. Sipos, K. Szántai-Köhegyi, Z. Kókai, A. Fekete, Geographical origin identification of pure Sri Lanka tea infusions with electronic nose, electronic tonue and sensory profile analysis, J. Chemom., 24 (2010) 121–130.
  8. T.U.S. Peiris, C.K. Walgampaya, R.O. Thattill, I.S.B. Abeysinghe, Classification of geographical origin of Sri Lankan black tea using discriminant function analysis, Trop. Agric. Res., 29 (2017) 12–24.
  9. K. Toko, Biometric Sensor Technology, Cambridge University Press, 2000.
  10. P. Ivarsson, Y. Kikkawa, F. Winquist, C. Krantz-Rulcker, N.E. Hojer, K. Hayashi, K. Toko, I. Lundstrom, Development of an electronic tongue based on a PEDOT-modified voltammetric sensor, Anal. Chim. Acta, 449 (2001) 59–68.
  11. K. Toko, A taste sensor – a review article, Maes. Sci. Technol., 9 (1998) 1919–1936.
  12. Y. Tahara, K. Toko, Electronic tongues – a review, IEEE Sens. J., 13 (2013) 3001–3011.
  13. P. Ciosek, W. Wróblewski, Potentiometric electronic tongues for foodstuff and biosample recognition –
    an overview, Sensors, 11 (2011) 4688–4701.
  14. E.A. Baldwin, J. Bai, A. Plotto, S. Dea, Electronic noses and tongues: application for the food and pharmaceutical industries, Sensors, 11 (2011) 4744–4766.
  15. K. Toko, Taste sensor with global selectivity, Mater. Sci. Eng., C, 4 (1996) 69–82.
  16. F. Nakatani, T.T. Ienaga, X. Wu, Y. Tahara, H. Ikezaki, H. Sano, Y. Muto, Y. Kaneda, K. Toko, Development of a sensor with a lipid/polymer membrane comprising Na+ ionophores to evaluate the saltiness enhancement effect, Sensors, 19 (2019) 2–11.
  17. A.M. Peres, L.G. Dias, T.P. Barcelos, J. Sa Morais, A.A.S.C. Marchado, An electronic tongue for juice level evaluation in non-alcoholic beverage, Procedia Chem., 1 (2009) 1023–1026.
  18. K. Toko, D. Hara, Y. Tahara, M. Yasuura, H.Ikezaki, Relationship between the amount of bitter substances adsorbed onto lipid/polymer membrane and the electric response of taste sensors, Sensors, 14 (2014) 16274–16286.
  19. R. Yatabe, J. Noda, Y. Tahara, Y. Naito, H. Ikezaki, K. Toko, Analysis of a lipid/polymer membrane for bitterness sensing with a preconditioning process, Sensors, 15 (2015) 22439–22450.
  20. M. Szpakowska, A. Magnuszewska, J. Szwacki, On the possibility of using liquid or lipid, lipid like – polymer membrane systems as taste sensor, J. Membr. Sci., 273 (2006) 116–123.
  21. E. Marjańska, M. Szpakowska, Qualitative, quantitative analysis of tested tonic waters by potentiometric taste sensor with allsolid- state electrodes, IEEE Sens. J., 18 (2018) 1250–1255.
  22. E. Marjańska, M. Szpakowska, All solid state electrodes taste sensor with modified polymer membranes for discrimination of mineral water with different CO2 content, Desal. Water Treat., 128 (2018) 278–284.
  23. W. He, X. Hu, L. Zhao, X. Liao, Y. Zhang, M. Zhang, J. Wu, Evaluation of Chinese tea by the electronic tongue: Correlation with sensory properties and classification according to geographical origin and grade level, Food Res. Int., 42 (2009) 1462–1467.
  24. R. Bhattacharyya, B. Tudu, S.C. Das, N. Bhattacharyya, R. Bhattacharyya, P. Pramanik, Classification of black tea liquor using cyclic voltammetry, J. Food Eng., 109 (2012) 120–126.
  25. Y.H. Zhong, S. Zhang, R. He, J. Zhang, Z. Zhou, X. Cheng, G. Huang, J. Zhang, A convolutional neural network based auto features extraction method for tea classification with electronic tongue, Appl. Sci., 9 (2019) 2518, doi: 10.3390/app9122518.
  26. A.P. Bhondekar, M. Dhiman, A. Sharma, A. Bhakta, A. Ganguli, S.S. Bari, R. Vig, P. Kapur, M.L. Singla, A novel iTongue for Indian black tea discrimination, Sens. Actuators, B, 148 (2010) 601–609.
  27. I. Novak, M. Šeruga, Š. Komorsky-Lovrič., Characterisation of catechins in green and black teas
    using square-wave voltammetry and RP-HPLC-ECD, Food Chem., 122 (2010) 1283–1289.
  28. A. Ghosh, B. Tudu, P. Tamuly, N. Bhattacharyya, R. Bhattacharyya, Prediction of theaflavin and thearubigin content in black tea using a voltammetric electronic tongue, Chemom. Intell. Lab. Syst., 116 (2012) 57–66.
  29. Z. Qin, X. Pang, D. Chen, H. Cheng, X. Hu, J. Wu, Evaluation of Chinese tea by the electronic nose and gas chromatography–mass spectrometry: correlation with sensory properties and classification according to grade level, Food Res. Int., 53 (2013) 864–874.
  30. Q. Chen, A. Liu, J. Zhao, Q. Quyang, Classification of tea category using a portable electronic nose based on an odor imaging sensor array, J. Pharm. Biomed. Anal., 84 (2013) 77–83.
  31. B. Tudu, A. Jana, A. Metla, D. Ghosh, N. Bhattacharyya, R. Bhattacharyya, Electronic nose for black tea quality evaluation by an incremental RBF network, Sens. Actuators, B, 138 (2009) 90–95.
  32. Y. Kobayashi, M. Habara, H. Ikezaki, R. Chen, Y. Naito, K. Toko, Advanced taste sensors based on artificial lipids with global selectivity to basic taste qualities and high correlation to sensory scores, Sensors, 10 (2010) 3411–3443.
  33. M. Śmiechowska, P. Dmowski, Crude fiber as a parameter in the quality evaluation of tea, Food Chem., 94 (2006) 366–368.
  34. E. Marjanska, M. Szpakowska, Characterization of various drinking waters by new potentiometric taste sensor with lipid, lipid like-polymer membranes, Desal. Water Treat., 64 (2017) 345–349.
  35. B. Weinert, M. Ulrich, A. Mosandl, GC-IRMS analysis of black Ceylon, Assam and Darjeeling teas, Z Lebens Untesch Forsch A, 8 (1999 271–288.
  36. H. Abdi, L.J. Williams, Principal Component Analysis, John Wiley & Sons Inc., 2 (2010) 433–458.
  37. A. Laddi, N.R. Prakash, S. Sharma, H.S. Mondal, A. Kumar, P. Kapur, Significant physical attributes affecting quality of Indian black (CTC) tea, J. Food Eng., 113 (2012) 69–78.