References

  1. S. Kaza, L.C. Yao, P. Bhada-Tata, F. van Woerden, What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050, The World Bank Group, Washington, D.C., 2018.
  2. M.A. Kamaruddin, M.S. Yusoff, H.A. Aziz, Y.-T. Hung, Sustainable treatment of landfill leachate, Appl. Water Sci., 5 (2015) 113–126.
  3. J.F. Artiola, Chapter 21 – Industrial Waste and Municipal Solid Waste Treatment and Disposal, M.L. Brusseau, I.L. Pepper, C.P. Gerba, Eds., Environmental and Pollution Science, Elsevier, Arizona, 2019, pp. 377–391.
  4. S.M. Raghab, A.M. Abd El Meguid, H.A. Hegazi, Treatment of leachate from municipal solid waste landfill, HBRC J., 9 (2013) 187–192.
  5. J.-S. Guo, A.A. Abbas, Y.-P. Chen, Z.-P. Liu, F. Fang, P. Chen, Treatment of landfill leachate using a combined stripping, Fenton, SBR, and coagulation process, J. Hazard. Mater., 178 (2010) 699–705.
  6. M. Vaccari, T. Tudor, G. Vinti, Characteristics of leachate from landfills and dumpsites in Asia, Africa and Latin America: an overview, Waste Manage., 95 (2019) 416–431.
  7. H. Alvarez-Vazquez, B. Jefferson, S.J. Judd, Membrane bioreactors vs conventional biological treatment of landfill leachate: a brief review, J. Chem. Technol. Biotechnol., 79 (2004) 1043–1049.
  8. S.N. Farhana Zakaria, H. Abdul Aziz, Characteristic of leachate at Alor Pongsu Landfill Site, Perak, Malaysia:
    a comparative study, IOP Conf. Ser.: Earth Environ. Sci., 140 (2018) 012013,
    doi: 10.1088/1755-1315/140/1/012013.
  9. H. Bakraouy, S. Souabi, K. Digua, O. Dkhissi, M. Sabar, M. Fadil, Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation–flocculation process using experimental design methodology, Process Saf. Environ. Prot., 109 (2017) 621–630.
  10. J. Harmsen, Identification of organic compounds in leachate from a waste tip, Water Res., 17 (1983) 699–705.
  11. N. Galvão, J.B. de Souza, C.M. de S. Vidal, Landfill leachate treatment by electrocoagulation: effects of current density and electrolysis time, J. Environ. Chem. Eng., 8 (2020) 104368, doi: 10.1016/j.jece.2020.104368.
  12. A.M.H. Shadi, M.A. Kamaruddin, N.M. Niza, M.I. Emmanuela, M.A. Shaah, M.S. Yusoff, F.A. Allafi, Characterization of stabilized leachate and evaluation of LPI from sanitary landfill in Penang, Malaysia, Desal. Water Treat., 189 (2020) 152–164.
  13. N.H. Adam, M.S. Yusoff, H.A. Aziz, Biodegradability of semi-aerobic leachate, AIP Conf. Proc., 1892 (2017) 040010, doi: 10.1063/1.5005690.
  14. Y. Peng, Perspectives on technology for landfill leachate treatment, Arabian J. Chem., 10 (2017) S2567–S2574.
  15. A.S. Naje, M.A. Ajeel, I.M. Ali, H.A.M. Al-Zubaidi, P.A. Alaba, Raw landfill leachate treatment using an electrocoagulation process with a novel rotating electrode reactor, Water Sci. Technol., 80 (2019) 458–465.
  16. F.J. Stevenson, Humus Chemistry: Genesis, Composition, Reactions, Wiley, New Jersey, 1994, 512 pages. Available at: https://www.wiley.com/en-us/Humus+Chemistry%3A+Genesis% 2C+Composition%2C+Reactions%2C+2nd+Edition-p-978047 1594741 (Accessed February 4, 2022).
  17. O. Dia, P. Drogui, G. Buelna, R. Dubé, B.S. Ihsen, Electrocoagulation of bio-filtrated landfill leachate: fractionation of organic matter and influence of anode materials, Chemosphere, 168 (2017) 1136–1141.
  18. D.T. Moussa, M.H. El-Naas, M. Nasser, M.J. Al-Marri, A comprehensive review of electrocoagulation for water treatment: potentials and challenges, J. Environ. Manage., 186 (2017) 24–41.
  19. N. Chawaloesphosiya, J. Mongkolnauwarat, C. Prommajun, K. Wongwailikhit, P. Painmanakul, Treatment of cutting-oily wastewater by electrocoagulation–flotation (ECF) process: modeling approach, Environ. Eng. Res., 20 (2015) 392–396.
  20. H. Singh, B.K. Mishra, Assessment of kinetics behavior of electrocoagulation process for the removal of suspended solids and metals from synthetic water, Environ. Eng. Res., 22 (2017) 141–148.
  21. C.A. Murray, S.A. Parsons, Advanced oxidation processes: flowsheet options for bulk natural organic matter removal, Water Supply, 4 (2004) 113–119.
  22. S. Renou, J.G. Givaudan, S. Poulain, F. Dirassouyan, P. Moulin, Landfill leachate treatment: review and opportunity, J. Hazard. Mater., 150 (2008) 468–493.
  23. M. Verma, R.N. Kumar, Coagulation and electrocoagulation for co-treatment of stabilized landfill leachate and municipal wastewater, J. Water Reuse Desal., 8 (2018) 234–243.
  24. M. Mousazadeh, Z. Naghdali, Z. Al-Qodah, S.M. Alizadeh, E. Karamati Niaragh, S. Malekmohammadi, P.V. Nidheesh, E.P.L. Roberts, M. Sillanpää, M. Mahdi Emamjomeh, A systematic diagnosis of state of the art in the use of electrocoagulation as a sustainable technology for pollutant treatment: an updated review, Sustainable Energy Technol. Assess., 47 (2021) 101353, doi: 10.1016/j.seta.2021.101353.
  25. S.M. Didar-Ul Islam, Electrocoagulation (EC) technology for wastewater treatment and pollutants removal, Sustainable Water Resour. Manage., 5 (2019) 359–380.
  26. D. Ghernaout, Electrocoagulation as a pioneering separation technology—electric field role, Open Access Lib. J., 7 (2020) 1–19.
  27. J.N. Hakizimana, B. Gourich, M. Chafi, Y. Stiriba, C. Vial, P. Drogui, J. Naja, Electrocoagulation process in water treatment: a review of electrocoagulation modeling approaches, Desalination, 404 (2017) 1–21.
  28. J. Bratby, Coagulation and Flocculation in Water and Wastewater Treatment, 3rd ed., IWA Publishing, London, UK, 2016.
  29. R. Hogg, Flocculation and Dewatering of Fine-Particle Suspensions, CRC Press, Boca Raton, 2005, pp. 823–868. Available at: https://doi.org/10.1201/9781420027686-15
  30. T. Harif, M. Khai, A. Adin, Electrocoagulation versus chemical coagulation: coagulation/flocculation mechanisms and resulting floc characteristics, Water Res., 46 (2012) 3177–3188.
  31. D. Ghernaout, M.W. Naceur, B. Ghernaout, A review of electrocoagulation as a promising coagulation process for improved organic and inorganic matters removal by electrophoresis and electroflotation, Desal. Water Treat., 28 (2011) 287–320.
  32. S. Garcia-Segura, M.M.S.G. Eiband, J.V. de Melo, C.A. Martínez-Huitle, Electrocoagulation and advanced electrocoagulation processes: a general review about the fundamentals, emerging applications and its association with other technologies, J. Electroanal. Chem., 801 (2017) 267–299.
  33. T. Missana, A. Adell, On the applicability of DLVO theory to the prediction of clay colloids stability, J. Colloid Interface Sci., 230 (2000) 150–156.
  34. A. Matilainen, M. Vepsäläinen, M. Sillanpää, Natural organic matter removal by coagulation during drinking water treatment: a review, Adv. Colloid Interface Sci., 159 (2010) 189–197.
  35. E.A. Vik, D.A. Carlson, A.S. Eikum, E.T. Gjessing, Electrocoagulation of potable water, Water Res., 18 (1984) 1355–1360.
  36. Y. Feng, L. Yang, J. Liu, B.E. Logan, Electrochemical technologies for wastewater treatment and resource reclamation, Environ. Sci. Water Res. Technol., 2 (2016) 800–831.
  37. P. Gautam, S. Kumar, S. Lokhandwala, Advanced oxidation processes for treatment of leachate from hazardous waste landfill: a critical review, J. Cleaner Prod., 237 (2019) 117639, doi:10.1016/j.jclepro.2019.117639.
  38. P.K. Holt, G.W. Barton, C.A. Mitchell, The future for electrocoagulation as a localised water treatment technology, Chemosphere, 59 (2005) 355–367.
  39. M. Fryda, T. Matthée, S. Mulcahy, M. Höfer, L. Schäfer, I. Tröster, Applications of DIACHEM® electrodes in electrolytic water treatment, Electrochem. Soc. Interface, 12 (2003) 40–44.
  40. A. Shahedi, A.K. Darban, F. Taghipour, A. Jamshidi- Zanjani, A review on industrial wastewater treatment via electrocoagulation processes, Curr. Opin. Electrochem., 22 (2020) 154–169.
  41. K. Padmaja, J. Cherukuri, M. Anji Reddy, A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent, J. Water Process Eng., 34 (2020) 101153, doi: 10.1016/j.jwpe.2020.101153.
  42. I. Sirés, E. Brillas, M.A. Oturan, M.A. Rodrigo, M. Panizza, Electrochemical advanced oxidation processes: today and tomorrow. A review, Environ. Sci. Pollut. Res., 21 (2014) 8336–8367.
  43. D. Ghernaout, M. Aichouni, M. Touahmia, Mechanistic insight into disinfection by electrocoagulation –
    a review, Desal. Water Treat., 141 (2019) 68–81.
  44. A. Fernandes, P. Spranger, A.D. Fonseca, M.J. Pacheco, L. Ciríaco, A. Lopes, Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates, Appl. Catal., B, 144 (2014) 514–520.
  45. S. Cotillas, J. Llanos, I. Moraleda, P. Cañizares, M.A. Rodrigo, Scaling-up an integrated
    electrodisinfection-electrocoagulation process for wastewater reclamation, Chem. Eng. J., 380 (2020) 122415, doi: 10.1016/j.cej.2019.122415.
  46. L.W.M. Zailani, N.S.M. Zin, Application of electrocoagulation in various wastewater and leachate treatment-a review, IOP Conf. Ser.: Earth Environ. Sci., 140 (2018) 012052, doi: 10.1088/1755-1315/140/1/012052.
  47. O. Sahu, B. Mazumdar, P.K. Chaudhari, Treatment of wastewater by electrocoagulation: a review, Environ. Sci. Pollut. Res., 21 (2014) 2397–2413.
  48. A.K. Chopra, A. Kumar Sharma, V. Kumar, Overview of electrolytic treatment: an alternative technology for purification of wastewater, Arch. Appl. Sci. Res., 3 (2011) 191–206.
  49. Y. Deng, X. Zhu, N. Chen, C. Feng, H. Wang, P. Kuang, W. Hu, Review on electrochemical system for landfill leachate treatment: performance, mechanism, application, shortcoming, and improvement scheme, Sci. Total Environ., 745 (2020) 140768, doi: 10.1016/j.scitotenv.2020.140768.
  50. C. Gong, Z. Zhang, H. Li, D. Li, B. Wu, Y. Sun, Y. Cheng, Electrocoagulation pretreatment of wet-spun acrylic fibers manufacturing wastewater to improve its biodegradability, J. Hazard. Mater., 274 (2014) 465–472.
  51. A.M.H. Elnenay, E. Nassef, G.F. Malash, M.H.A. Magid, Treatment of drilling fluids wastewater by electrocoagulation, Egypt. J. Pet., 26 (2017) 203–208.
  52. S.M. Safwat, Treatment of real printing wastewater using electrocoagulation process with titanium and zinc electrodes, J. Water Process Eng., 34 (2020) 101137, doi: 10.1016/j.jwpe.2020.101137.
  53. A. Izadi, M. Hosseini, G. Najafpour Darzi, G. Nabi Bidhendi, F. Pajoum Shariati, Treatment of paper-recycling wastewater by electrocoagulation using aluminum and iron electrodes, J. Environ. Health Sci. Eng., 16 (2018) 257–264.
  54. A. de la Luz-Pedro, E.F. Martínez Prior, M.H. López-Araiza, S. Jaime-Ferrer, A. Estrada-Monje, J.A. Bañuelos, Pollutant removal from wastewater at different stages of the tanning process by electrocoagulation, J. Chem., 2019 (2019) 1–9, doi: 10.1155/2019/8162931.
  55. M. Azadi Aghdam, H.-R. Kariminia, S. Safari, Removal of lignin, COD, and color from pulp and paper wastewater using electrocoagulation, Desal. Water Treat., 57 (2016) 9698–9704.
  56. S. Yılmaz, E.E. Gerek, Y. Yavuz, A.S. Koparal, Treatment of vinegar industry wastewater by electrocoagulation with monopolar aluminum and iron electrodes and toxicity evaluation, Water Sci. Technol., 78 (2018) 2542–2552.
  57. N. Nanayakkara, A. Koralage, C. Meegoda, S. Kariyawasam, Removing nitrogenous compounds from landfill leachate using electrochemical techniques, Environ. Eng. Res., 24 (2018) 339–346.
  58. F. Ghanbari, J. Wu, M. Khatebasreh, D. Ding, K.-Y.A. Lin, Efficient treatment for landfill leachate through sequential electrocoagulation, electrooxidation and PMS/UV/CuFe2O4 process, Sep. Purif. Technol., 242 (2020) 116828, doi: 10.1016/j. seppur.2020.116828.
  59. X. Huang, Y. Qu, C.A. Cid, C. Finke, M.R. Hoffmann, K. Lim, S.C. Jiang, Electrochemical disinfection of toilet wastewater using wastewater electrolysis cell, Water Res., 92 (2016) 164–172.
  60. J. Grellier, L. Rushton, D.J. Briggs, M.J. Nieuwenhuijsen, Assessing the human health impacts of exposure to disinfection by-products — a critical review of concepts and methods, Environ. Int., 78 (2015) 61–81.
  61. B. Xu, S.M. Iskander, Z. He, Dominant formation of unregulated disinfection by-products during electrocoagulation treatment of landfill leachate, Environ. Res., 182 (2020) 109006,
    doi: 10.1016/j.envres.2019.109006.
  62. M.H. Ibrahim, D.T. Moussa, M.H. El-Naas, M.S. Nasser, A perforated electrode design for passivation reduction during the electrochemical treatment of produced water, J. Water Process Eng., 33 (2020) 101091, doi:10.1016/j.jwpe.2019.101091.
  63. M.A. Madhavan, S.P. Antony, Effect of polarity shift on the performance of electrocoagulation process for the treatment of produced water, Chemosphere, 263 (2021) 128052, doi: 10.1016/j. chemosphere.2020.128052.
  64. M. Mollah, P. Morkovsky, J. Gomes, M. Kesmez, J. Parga, D. Cocke, Fundamentals, present and future perspectives of electrocoagulation, J. Hazard. Mater., 114 (2004) 199–210.
  65. V.D. Donneys-Victoria, N. Marriaga-Cabrales, F. Machuca- Martínez, Chapter 2 – Electrocoagulation for Landfill Leachate Treatment: A Review of Patents and Research Articles, J.M. Peralta-Hernández,
    M.A. Rodrigo-Rodrigo, C.A. Martínez-Huitle, Eds., Evaluation of Electrochemical Reactors as a New Way to Environmental Protection, Research Signpost, Kerala, India, 2014, pp. 17–39.
  66. X. Liu, X.-M. Li, Q. Yang, X. Yue, T.-T. Shen, W. Zheng, K. Luo, Y.-H. Sun, G.-M. Zeng, Landfill leachate pretreatment by coagulation–flocculation process using iron-based coagulants: optimization by response surface methodology, Chem. Eng. J., 200–202 (2012) 39–51.
  67. M. Vepsäläinen, M. Sillanpää, Chapter 1 – Electrocoagulation in the Treatment of Industrial Waters and Wastewaters, M. Sillanpää, Ed., Advanced Water Treatment: Electrochemical Methods, Elsevier, Miami, Florida, 2020, pp. 1–78. Available at: https://doi.org/10.1016/B978-0-12-819227-6.00001-2
  68. T.R. Devlin, M.S. Kowalski, E. Pagaduan, X. Zhang, V. Wei, J.A. Oleszkiewicz, Electrocoagulation of wastewater using aluminum, iron, and magnesium electrodes, J. Hazard. Mater., 368 (2019) 862–868.
  69. D.J. Kruk, M. Elektorowicz, J.A. Oleszkiewicz, Struvite precipitation and phosphorus removal using magnesium sacrificial anode, Chemosphere, 101 (2014) 28–33.
  70. B.N. Malinovic, T. Djuricic, D. Bjelic, Selection and consumption of electrode material for electrocoagulation of landfill leachate, J. Environ. Prot. Ecol., 18 (2017) 313–322.
  71. M.K.N. Mahmad, M.A.Z. Mohd Remy Rozainy, I. Abustan, N. Baharun, Electrocoagulation process by using aluminium and stainless steel electrodes to treat total chromium, colour and turbidity, Procedia Chem., 19 (2016) 681–686.
  72. L. Xu, G. Cao, X. Xu, S. Liu, Z. Duan, C. He, Y. Wang, Q. Huang, Simultaneous removal of cadmium, zinc and manganese using electrocoagulation: influence of operating parameters and electrolyte nature, J. Environ. Manage., 204 (2017) 394–403.
  73. P. Asaithambi, R. Govindarajan, M.B. Yesuf, P. Selvakumar, E. Alemayehu, Investigation of direct and alternating current– electrocoagulation process for the treatment of distillery industrial effluent: Studies on operating parameters, J. Environ. Chem. Eng., 9 (2021) 104811, doi: 10.1016/j.jece.2020.104811.
  74. R. Kamaraj, P. Ganesan, J. Lakshmi, S. Vasudevan, Removal of copper from water by electrocoagulation process-effect of alternating current (AC) and direct current (DC), Environ. Sci. Pollut. Res., 20 (2013) 399–412.
  75. M.O. Orkun, A. Kuleyin, Treatment performance evaluation of chemical oxygen demand from landfill leachate by electrocoagulation and electro-Fenton technique, Environ. Prog. Sustainable Energy, 31 (2012) 59–67.
  76. M. Ingelsson, N. Yasri, E.P.L. Roberts, Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review, Water Res., 187 (2020) 116433, doi:10.1016/j.watres.2020.116433.
  77. X. Li, G.B. Ma, Y.Y. Liu, Synthesis and characterization of magnesium hydroxide using a bubbling setup, Ind. Eng. Chem. Res., 48 (2009) 763–768.
  78. M. Asselin, P. Drogui, S.K. Brar, H. Benmoussa, J.-F. Blais, Organics removal in oily bilgewater by electrocoagulation process, J. Hazard. Mater., 151 (2008) 446–455.
  79. C.-T. Wang, W.-L. Chou, Y.-M. Kuo, Removal of COD from laundry wastewater by electrocoagulation/electroflotation, J. Hazard. Mater., 164 (2009) 81–86.
  80. D. Bhagawan, S. Poodari, N. Chaitanya, S. Ravi, Y.M. Rani, V. Himabindu, S. Vidyavathi, Industrial solid waste landfill leachate treatment using electrocoagulation and biological methods, Desal. Water Treat., 68 (2017) 137–142.
  81. P. Song, Z. Yang, G. Zeng, X. Yang, H. Xu, L. Wang, R. Xu, W. Xiong, K. Ahmad, Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review, Chem. Eng. J., 317 (2017) 707–725.
  82. N. Huda, A.A.A. Raman, M.M. Bello, S. Ramesh, Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization, J. Environ. Manage., 204 (2017) 75–81.
  83. J. Ding, K. Wang, S. Wang, Q. Zhao, L. Wei, H. Huang, Y. Yuan, D.D. Dionysiou, Electrochemical treatment of bio-treated landfill leachate: influence of electrode arrangement, potential, and characteristics, Chem. Eng. J., 344 (2018) 34–41.
  84. M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, A.W. Zularisam, Electrode design for electrochemical cell to treat palm oil mill effluent by electrocoagulation process, Environ. Technol. Innovation, 9 (2018) 323–341.
  85. V. Khandegar, A.K. Saroha, Effect of electrode shape and current source on performance of electrocoagulation, J. Hazard. Toxic Radioact. Waste, 20 (2016) 06015001, doi: 10.1061/(ASCE) HZ.2153-5515.0000278.
  86. P.B. Bhagawati, C.B. Shivayogimath, Electrochemical technique for paper mill effluent degradation using concentric aluminum tube electrodes (CATE), J. Environ. Health Sci. Eng., 19 (2021) 553–564.
  87. F. Hussin, F. Abnisa, G. Issabayeva, M.K. Aroua, Removal of lead by solar-photovoltaic electrocoagulation using novel perforated zinc electrode, J. Cleaner Prod., 147 (2017) 206–216.
  88. E.-S.Z. El-Ashtoukhy, Y.A. El-Taweel, O. Abdelwahab, E.M. Nassef, Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor, Int. J. Electrochem. Sci., 8 (2013) 1534–1550.
  89. G. Chen, Electrochemical technologies in wastewater treatment, Sep. Purif. Technol., 38 (2004) 11–41.
  90. H. Elnakar, I. Buchanan, Soluble chemical oxygen demand removal from bypass wastewater using iron electrocoagulation, Sci. Total Environ., 706 (2020) 136076, doi: 10.1016/j.scitotenv. 2019.136076.
  91. M. Bharath, Comparative Study of Landfill Leachate Treatment by Electrocoagulation and Electro-Fenton Processes, Dissertation, Visvesvaraya Technological University, Tribal Digital Document Repository, Tribal Affairs, Belagavi, Karnataka, 2020. Available at: http://repository.tribal.gov.in/ handle/123456789/74719 (Accessed August 10, 2021).
  92. A. von Meier, Electric Power Systems: A Conceptual Introduction, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
  93. P. Rafiee, M. Hosseini, S. Ebrahimi, The evolution patterns of temperature, pH, and voltage during the removal of chemical oxygen demand from a landfill leachate using electrocoagulation under different conditions, React. Kinet. Mech. Catal., 131 (2020) 319–334.
  94. N. Yasri, J. Hu, M.G. Kibria, E.P.L. Roberts, Electrocoagulation Separation Processes, ACS Symposium Series, American Chemical Society, ACS Publications, Washington, DC, 2020, pp. 167–203. Available at: https://doi.org/10.1021/bk-2020-1348. ch006
  95. D. Ghernaout, N. Elboughdiri, Electrocoagulation process intensification for disinfecting water – a review, Appl. Eng., 3 (2019) 140–147.
  96. M. Nasrullah, L. Singh, S. Krishnan, M. Sakinah, D.M. Mahapatra, A.W. Zularisam, Electrocoagulation treatment of raw palm oil mill effluent: effect of operating parameters on floc growth and structure, J. Water Process Eng., 33 (2020) 101114, doi: 10.1016/j. jwpe.2019.101114.
  97. J. Ding, L. Wei, H. Huang, Q. Zhao, W. Hou, F.T. Kabutey, Y. Yuan, D.D. Dionysiou, Tertiary treatment of landfill leachate by an integrated electro-oxidation/electro-coagulation/electroreduction process: performance and mechanism, J. Hazard. Mater., 351 (2018) 90–97.
  98. M.S.K.A. Sarkar, G.M. Evans, S.W. Donne, Bubble size measurement in electroflotation, Miner. Eng., 23 (2010) 1058–1065.
  99. A.M.H. Shadi, M.A. Kamaruddin, N.M. Niza, M.I. Emmanuel, Md. S. Hossain, N. Ismail, Electroflotation treatment of stabilized landfill leachate using titanium-based electrode, Int. J. Environ. Sci. Technol., 18 (2021) 2425–2440.
  100. R. Prakash, S.K. Majumder, A. Singh, Flotation technique: Its mechanisms and design parameters, Chem. Eng. Process., 127 (2018) 249–270.
  101. N. Muhammad Niza, M.S. Yusoff, M.A.A. Mohd Zainuri, M.I. Emmanuel, A. Mohamed Hussen Shadi, M.A. Kamaruddin, Performance of batch electrocoagulation with vibration-induced electrode plates for landfill leachate treatment, J. Water Process Eng., 36 (2020) 101282, doi: 10.1016/j.jwpe.2020.101282.
  102. Z. Al-Qodah, M. Al-Shannag, Heavy metal ions removal from wastewater using electrocoagulation processes: a comprehensive review, Sep. Sci. Technol., 52 (2017) 1–28.
  103. M.V. Ivanov, B.S. Ksenofontov, Intensification of flotation treatment by exposure to vibration, Water Sci. Technol., 69 (2014) 1434–1439.
  104. S.K. Nicol, M.D. Engel, K.C. Teh, Fine-particle flotation in an acoustic field, Int. J. Miner. Process., 17 (1986) 143–150.
  105. A.M. Alkhatib, A.H. Hawari, M.A. Hafiz, A. Benamor, A novel cylindrical electrode configuration for inducing dielectrophoretic forces during electrocoagulation, J. Water Process Eng., 35 (2020) 101195, doi:10.1016/j.jwpe.2020. 101195.
  106. A.H. Hawari, A.M. Alkhatib, M. Hafiz, P. Das, A novel electrocoagulation electrode configuration for the removal of total organic carbon from primary treated municipal wastewater, Environ. Sci. Pollut. Res., 27 (2020) 23888–23898.
  107. J. Torkashvand, R. Rezaei Kalantary, N. Heidari, Z. Kazemi, Z. Kazemi, M. Farzadkia, V. Amoohadi, Y. Oshidari, Application of ultrasound irradiation in landfill leachate treatment, Environ. Sci. Pollut. Res., 28 (2021) 47741–47751.
  108. M. Afsharnia, H. Biglari, S.S. Rasouli, A. Karimi, M. Kianmehr, Sono-electrocoagulation of fresh leachate from municipal solid waste; simultaneous applying of iron and copper electrodes, Int. J. Electrochem. Sci., 13 (2018) 472–484.
  109. P. Asaithambi, R. Govindarajan, M. Busier Yesuf, P. Selvakumar, E. Alemayehu, Enhanced treatment of landfill leachate wastewater using sono(US)-ozone(O3)–electrocoagulation(EC) process: role of process parameters on color, COD and electrical energy consumption, Process Saf. Environ. Prot., 142 (2020) 212–218.
  110. G. Nazimudheen, K. Roy, T. Sivasankar, V.S. Moholkar, Mechanistic investigations in ultrasonic pretreatment and anaerobic digestion of landfill leachates, J. Environ. Chem. Eng., 6 (2018) 1690–1701.
  111. M.A.A. Hamid, H.A. Aziz, M.S. Yusoff, S.A. Rezan, Clinoptilolite augmented electrocoagulation process for the reduction of high‐strength ammonia and color from stabilized landfill leachate, Water Environ. Res., 93 (2021) 596–607.
  112. M.A.A. Hamid, H.A. Aziz, M.S. Yusoff, S.A. Rezan, A continuous clinoptilolite augmented SBRelectrocoagulation process to remove concentrated ammonia and colour in landfill leachate, Environ. Technol. Innovation, 23 (2021) 101575, doi: 10.1016/j.eti.2021.101575.
  113. A. Almukdad, M. Hafiz, A.T. Yasir, R. Alfahel, A.H. Hawari, Unlocking the application potential of electrocoagulation process through hybrid processes, J. Water Process Eng., 40 (2021) 101956, doi:10.1016/j.jwpe.2021.101956.
  114. S. Huo, B. Xi, H. Yu, L. He, S. Fan, H. Liu, Characteristics of dissolved organic matter (DOM) in leachate with different landfill ages, J. Environ. Sci., 20 (2008) 492–498.
  115. D. Oumar, D. Patrick, B. Gerardo, D. Rino, B.S. Ihsen, Coupling biofiltration process and electrocoagulation using magnesium-based anode for the treatment of landfill leachate, J. Environ. Manage., 181 (2016) 477–483.
  116. F. Ghanbari, M. Moradi, Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review, Chem. Eng. J., 310 (2017) 41–62.
  117. N.H. Dan, T. le Luu, Continuous flow sequencing bed biofilm reactor bio-digested landfill leachate treatment using electrocoagulation-persulfate, J. Environ. Manage., 297 (2021) 113409, doi:10.1016/j.jenvman.2021.113409.
  118. C. Gong, Z. Zhang, J. Zhang, S. Li, The addition of hydrogen peroxide in the electrocoagulation treatment for improving toxic organic matters removal: a comparative study, Sep. Sci. Technol., 52 (2017) 1404–1411.
  119. J. Ding, M. Jiang, G. Zhao, L. Wei, S. Wang, Q. Zhao, Treatment of leachate concentrate by electrocoagulation coupled with electro-Fenton-like process: efficacy and mechanism, Sep. Purif. Technol., 255 (2021) 117668, doi: 10.1016/j. seppur.2020.117668.
  120. S. Tang, J.M. Preece, C.M. McFarlane, Z. Zhang, Fractal morphology and breakage of DLCA and RLCA aggregates, J. Colloid Interface Sci., 221 (2000) 114–123.
  121. G.C. Bushell, Y.D. Yan, D. Woodfield, J. Raper, R. Amal, On techniques for the measurement of the mass fractal dimension of aggregates, Adv. Colloid Interface Sci., 95 (2002) 1–50.
  122. H. Azargoshasb, S.M. Mousavi, T. Amani, A. Jafari, M. Nosrati, Three-phase CFD simulation coupled with population balance equations of anaerobic syntrophic acidogenesis and methanogenesis reactions in a continuous stirred bioreactor, J. Ind. Eng. Chem., 27 (2015) 207–217.
  123. F. Coeuret, Eéments de génie électrochimique, Technique and Documentation-Lavoisier, Paris, 1984. Available at: http:// archives.umc.edu.dz/handle/123456789/119540 (Accessed August 20, 2021).