References

  1. S. Suthar, P. Singh, Household solid waste generation and composition in different family size and
    socio-economic groups: a case study, Sustainable Cities Soc., 14 (2015) 56–63.
  2. V. Venkateswara Rao, S.K. Ghosh, Sustainable Biomedical Waste Management—Case Study in India, In: Urban Mining and Sustainable Waste Management, 2020, pp. 303–317.
  3. J.J. Wu, C.-C. Wu, H.-W. Ma, C.-C. Chang, Treatment of landfill leachate by ozone-based advanced oxidation processes, Chemosphere, 7 (2004) 997–1003.
  4. F.-C. Mihai, Assessment of COVID-19 waste flows during the emergency state in Romania and related public health and environmental concerns, Int. J. Environ. Res. Public Health, 15 (2020) 5439, doi:10.3390/ijerph17155439.
  5. T. Banerjee, A Waste Rule Enterprise: COVID‐19 and India’s Waste Management Story, Degrees of Change 2020.
  6. World Health Organization (WHO) Laboratory Biosafety Guidance Related to Coronavirus Disease (COVID‐19): Interim Guidance Retrieved, Shortage of Personal Protective Equipment Endangering Health Workers Worldwide, World Health Organization, 2020.
  7. S.A. Sarkodie, P.A. Owusu, Impact of COVID-19 pandemic on waste management, Environ. Dev. Sustainable,
    23 (2021) 7951–7960.
  8. T.C. Nzeadibe, A.U.P. Ejike-Alieji, Solid waste management during Covid‐19 pandemic: policy gaps and prospects for inclusive waste governance in Nigeria, Local Environ., The Int. J. Justice Sustainability, 25 (2020) 527–535.
  9. C. Nzediegwu, S.X. Chang, Improper solid waste management increases potential for COVID‐19 spread in developing countries, Resour. Conserv. Recycl., 161 (2020) 104947, doi: 10.1016/j.resconrec.2020.104947.
  10. S.A. Sarkodie, P.A. Owusu, Global assessment of environment, health and economic impact of the novel coronavirus (COVID-19), Environ. Dev. Sustainable, 23 (2021) 5005–5015.
  11. S. Sangkham, Face mask and medical waste disposal during the novel COVID-19 pandemic in Asia, Case Stud. Chem. Environ. Eng., 2 (2020) 100052, doi: 10.1016/j.cscee.2020.100052.
  12. P. Agamuthu, J. Barasarathi, Clinical waste management under COVID-19 scenario in Malaysia, Waste Manage. Res.: The J. Sustainable Circular Econ., 39 (2021), doi: 10.1177/0734242X20959701.
  13. M. Minoglou, S. Gerassimidou, D. Komilis, Healthcare waste generation worldwide and its dependence on socio‐economic and environmental factors, Sustainability, 9 (2017) 220, doi: 10.3390/su9020220.
  14. A. Prüss‐Ustün, C. Corvalan, Preventing Disease Through Healthy Environments Towards An Estimate of the Environmental Burden of Disease, World Health Organization, 2006.
  15. B. Yang, T. Wei, K. Xiao, J. Deng, G. Yu, S. Li. J. Deng, C. Zhu, H. Duan, Q. Zhuo, Effective mineralization of anti-epilepsy drug carbamazepine in aqueous solution by simultaneously electro-generated H2O2/O3 process, Electrochim. Acta, 290 (2018) 203–210.
  16. H. Kusic, N. Koprivanac, A.L. Bozic, Minimization of organic pollutant content in aqueous solution by means of AOPs: UV- and ozone-based technologies, Chem. Eng. J., 123 (2006) 127–137.
  17. H. Suzuki, S. Araki, H. Yamamoto, Evaluation of advanced oxidation processes (AOP) using O3, UV, and TiO2 for the degradation of phenol in water, J. Water Process Eng., 7 (2015) 54–60.
  18. H.M.S. Munir, N. Feroze, A. Ikhlaq, M. Kazmi, F. Javed, H. Mukhtar, Removal of colour and COD from paper and pulp industry wastewater by ozone and combined ozone/UV process, Desal. Water Treat., 137 (2019) 154–161.
  19. S.A. Amr, H.A. Aziz, M.J. Bashir, S.Q. Aziz, T.M. Alslaibi, Comparison and optimization of ozone-based advanced oxidation processes in the treatment of stabilized landfill leachate, J. Eng. Res. Technol., 2 (2015) 122, doi:10.13140/RG.2.1.4934.8964.
  20. N. Amaral-Silva, R.C. Martins, S. Castro-Silva, R. Quinta-Ferreira, Ozonation and perozonation on the biodegradability improvement of a landfill leachate, J. Environ. Chem. Eng., 4 (2016) 527–533.
  21. W. Chen, Y. Luo, G. Ran, Q. Li, An investigation of refractory organics in membrane bioreactor effluent following the treatment of landfill leachate by the O3/H2O2 and MW/PS processes, Waste Manage., 97 (2019) 1–9.
  22. E. Kudlek, M. Dudziak, J. Bohdziewicz, G. Kamińska, The role of pH in the decomposition of organic micropollutants during the heterogeneous photocatalysis process, E3S Web Conf., 17 (2017) 00047.
  23. Ch. Tizaoui, L. Bouselmi, L. Mansouri, A. Ghrabi, Landfill leachate treatment with ozone and ozone/hydrogen peroxide systems, J. Hazard. Mater., 140 (2007) 316–324.
  24. C. Wu, Y. Zhou, X. Sun, L. Fu, The recent development of advanced wastewater treatment by ozone and biological aerated filter, Environ. Sci. Pollut. Res. Int., 25 (2018) 8315–8329.
  25. H. Mestankova, A.M. Parker, N. Bramaz, S. Canonica, K. Schirmer, U. von Gunten, K.G. Linden, Transformation of contaminant candidate list (CCL3) compounds during ozonation and advanced oxidation processes in drinking water: assessment of biological effects, Water Res., 93 (2016) 110–120.
  26. Y.B. Oz, H. Mamane, O. Menashe, V. Cohen-Yaniv, R. Kumar, L.I. Kruh, E. Kurzbaum, Treatment of olive mill wastewater using ozonation followed by an encapsulated acclimated biomass, J. Environ. Chem. Eng., 6 (2018) 5014–5023.
  27. R. Tosik, Dyes colour removal by ozone and hydrogen peroxide: some aspects and problems, Ozone: Sci. Eng., The J. Int. Ozone Assoc., 27 (2005) 265–271.
  28. F. Wang, D. Van Halem, J.P. Van der Hoek, The fate of H2O2 during managed aquifer recharge: a residual from advanced oxidation processes for drinking water production, Chemosphere, 148 (2016) 263–269.
  29. H. Wang, J. Zhan, W. Yao, B. Wang, S. Deng, J. Huang, G. Yu, Y. Wang, Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process, Water Res., 130 (2018) 127–138.
  30. Y. Lester, D. Avisar, I. Gozlan, H. Mamane, Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process, J. Water Sci. Technol., 64 (2011) 2230–2238.
  31. M. Bourgin, E. Borowska, J. Helbing, J. Hollender, H.-P. Kaiser, C. Kienle, C.S. McArdell, E. Simon, U. von Gunten, Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: kinetics of micropollutant abatement, transformation product and bromate formation in a surface water, Water Res., 122 (2017) 234–245.
  32. M.S. Lucas, J.A. Peres, G.L. Puma, Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 72 (2010) 235–241.
  33. N.E. Paucar, I. Kim, H. Tanaka, C. Sato, Effect of O3 dose on the O3/UV treatment process for the removal of pharmaceuticals and personal care products in secondary effluent, Chem. Eng. J., 3 (2019) 53–57.
  34. C.B. de Carvalho, M.E. de Franco, F.S. Souza, L.A. Féris, Degradation of Acid Black 210 by advanced oxidative processes: O3 and O3/UV, Ozone: Sci. Eng., The J. Int. Ozone Assoc., 40 (2018) 372–376.
  35. C.R. Landeros, C.E. Barrera-Díaz, A. Amaya, G. Roa-Morales, Evaluation of a coupled system of
    electro-oxidation and ozonation to remove the pesticide Thiodan® 35 CE (endosulfan) in aqueous solution, Fuel, 198 (2017) 91–98.
  36. M. Pourgholi, R.M. Jahandizi, M.B. Miranzadeh, O.H. Beigi, S. Dehghan, Removal of dye and COD from textile wastewater using AOP (UV/O3, UV/H2O2, O3/H2O2 and UV/H2O2/O3, J. Environ. Health Sustainable Dev., 621 (2018) 372–376.
  37. Z. Minghua, F. Xiumin, A. Rovetta, H. Qichang, F. Vicentini, L. Bingkai, A. Giusti, L. Yi, Municipal solid waste management in Pudong new area, China, Waste Manage., 29 (2009) 1227–1233.
  38. M. Čehovin, A. Medic, J. Scheideler, J. Mielcke, A. Ried, B. Kompare, A.Ž. Gotvajn, Hydrodynamic cavitation in combination with the ozone, hydrogen peroxide and the UV-based advanced oxidation processes for the removal of natural organic matter from drinking water, Ultrason. Sonochem., 37 (2017) 394–404.
  39. F. Wang, D.W. Smith, M.G. El-Din, Oxidation of Aged Raw Landfill Leachate with O3 only and O3/H2O2 and Molecular Size Distribution Analysis, Proceedings of the 16th World Congress of the International Ozone Association, IOA, Las Vegas, USA, 2003, pp. 1–21.
  40. A. Siciliano, A. Tagarelli, F. Tripicchio, Wet hydrogen peroxide catalytic oxidation of olive oil mill wastewaters using Cu-zeolite and Cu-pillared clay catalysts, Catal. Today, 124 (2007) 240–246.
  41. G. Selvabharathi, S. Adishkumar, S. Jenefa, G. Ginni, J.R. Banu, I.T. Yeom, Combined homogeneous and heterogeneous advanced oxidation process for the treatment of tannery wastewaters, J. Water Reuse Desal., 6 (2016) 59–71.
  42. W. Yu, N.J. Graham, G.D. Fowler, Coagulation and oxidation for controlling ultrafiltration membrane fouling in drinking water treatment: application of ozone at low dose in submerged membrane tank, Water Res., 95 (2016) 1–10.
  43. S.G. Schrank, W. Gebhardt, H.J. José, R.F.P.M. Moreira, H.F. Schröder, Ozone treatment of tannery wastewater monitored by conventional and substance specific wastewater analyses, Ozone: Sci. Eng., The J. Int. Ozone Assoc., 39 (2017) 159–187.
  44. A. Shokri, K. Mahanpoor, D. Soodbar, Degradation of ortho-toluidine in petrochemical wastewater by ozonation, UV/O3, O3/H2O2 and UV/O3/H2O2 processes, Desal. Water Treat., 57 (2016) 16473–16482.
  45. M. Sillanpää, M.C. Ncibi, A. Matilainen, Advanced oxidation processes for the removal of natural organic matter from drinking water sources: a comprehensive review, J. Environ. Manage., 208 (2018) 56–6.
  46. B.M. Souza, B.S. Souza, T.M. Guimarãe, T.F.S. Ribeiro, A.C. Cerqueira, G.L. Sant’Anna Jr., M. Dezotti, Removal of recalcitrant organic matter content in wastewater by means of AOPs aiming industrial water reuse, Environ. Sci. Pollut. Res. Int., 23 (2016) 22947–22956.
  47. R.C. Martins, A.M.T. Silva, S. Castro-Silva, P. Garção-Nunes, R.M. Quinta-Ferreira, Adopting strategies to improve the efficiency of ozonation in the real-scale treatment of olive oil mill wastewaters, Environ. Technol., 31 (2010) 1459–1469.
  48. I. Oller, S. Malato, J.A. Sánchez-Pérez, Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review, Sci. Total Environ., 409 (2011) 4141–4166.
  49. A. Ginos, T. Manios, D. Mantzavinos, Treatment of olive mill effluents by coagulation–flocculation–hydrogen peroxide oxidation and effect on phototoxicity, J. Hazard. Mater., 133 (2006) 135–42.
  50. M.I. Ashraf, M. Ateeb, M.H. Khan, N. Ahmed, Q. Mahmood, Integrated treatment of pharmaceutical effluents by chemical coagulation and ozonation, Sep. Purif. Technol., 158 (2016) 383–386.
  51. Y. Hui, W. Liao, S. Fenwei, H. Guang, Urban solid waste management in Chongqing: challenges and opportunities, Waste Manage., 26 (2006) 1052–1062.
  52. M. Abed Al Ahad, A. Chalak, S. Fares, P. Mardigian, R.R. Habib, Decentralization of solid waste management services in rural Lebanon: barriers and opportunities, Waste Manage. Res., 38 (2020) 639–648.
  53. R.B.P. Marcelino, M.M.D. Leão, R.M. Lago, C.C. Amorim, Multistage ozone and biological treatment system for real wastewater containing antibiotics, J. Environ. Manage., 195 (2017) 110–116.
  54. I. Ahmad, S. Chelliapan, N. Abdullah, M.D. Ahmad, Sanitary landfill is a solution in solid waste management or a silent threat to environment: Malaysian scenario, Open Int. J. Inf., 7 (2019) 135–146.
  55. F. Di Maria, E. Beccaloni, L. Bonadonna, C. Cini, E. Confalonieri, G. La Rosa, R.M. Maria, T. Emanuela,
    S. Federica, Minimization of spreading of SARS‐CoV‐2 via household waste produced by subjects affected by COVID‐19 or in quarantine, Sci. Total Environ., 743 (2020) 140803, doi: 10.1016/j.scitotenv.2020.140803.
  56. International Solid Waste Association: Waste Management During the COVID-19 Pandemic: ISWA’s Recommendations 2020.