References

  1. R. Feeney, S.P. Kounaves, On-site analysis of arsenic in groundwater using a microfabricated gold ultramicroelectrode array, Anal. Chem., 72 (2000) 2222–2228.
  2. V.L. Vukašinović-Pešić, M. Dikanović, N.Z. Blagojević, L.V. Rajaković, Source, characteristics and distribution of arsenic in the environment, Chem. Ind. Chem. Eng. Q., 11 (2005) 44–48
  3. D. Mohan, C.U. Pittman Jr., Arsenic removal from water/ wastewater using adsorbents—a critical review,
    J. Hazard. Mater., 142 (2007) 1–53.
  4. M. Czaplicka, K. Jaworek, J. Klyta, Determination of selected organoarsenic compounds by SPME/GC-MS in aquatic samples, Desal. Water Treat., 172 (2019) 386–394.
  5. M. Czaplicka, R. Kurowski, K. Jaworek, Ł. Bratek, Application of advanced oxidation processes for cleaning of industrial water generated in wet dedusting of shaft furnace gases, Environ. Technol., 34 (2013) 1455–1462.
  6. R. Turpeinen, M. Pantsar-Kallio, T. Kairsalo, Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils, Sci. Total Environ., 285 (2002) 133–145.
  7. A.N. Anthemidis, G.A. Zachariadis, J.A. Stratis, Determination of arsenic(III) and total inorganic arsenic in water samples using an on-line sequential insertion system and hydride generation atomic absorption spectrometry, Anal. Chim. Acta, 547 (2005) 237–242.
  8. ISO Standard Water Quality – Determination of Arsenic and Antimony – Part 2: Method Using Hydride Generation Atomic Absorption Spectrometry (HG-AAS) International Standard ISO 17378-2:2014, 2013.
  9. A.R. Kumar, P. Riyazuddin, Chemical interferences in hydridegeneration atomic spectrometry, TrAC, Trends Anal. Chem., 29 (2010) 166–176.
  10. A. Khaligh, H.Z. Mousavi, H. Shirkhanloo, A. Rashidi, Speciation and determination of inorganic arsenic species in water and biological samples by ultrasound assisted-dispersive-microsolid phase exctration on carboxylated nanoporous graphene coupled with flow injection-hydride generation atomic absorption spectrometry, RSC Adv., 5 (2015) 93347–93359.
  11. S. Maity, S. Chakravarty, P. Thakur, K.K. Gupta, S. Bhattacharjee, B.C. Roy, Evaluation and standardisation of a simple HG-AAS method for rapid speciation of As(III) and As(V) in some contaminated groundwater samples of West Bengal, India, Chemosphere, 54 (2004) 1199–1206.
  12. L.M.G. Santos, S.C. Jacob, Optimization and validation of a methodology to determine total arsenic, As(III) and As(V), in water samples, through graphite furnace atomic absorption spectrometry, Food Sci. Technol., 29 (2009) 120–123.
  13. A. Sahuquillo, G. Rauret, A. Rehnert, H. Muntau, Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure, Anal. Chim. Acta, 478 (2003) 15–24.
  14. S. Sounderajan, A.C. Udas, B. Venkataramani, Characterization of arsenic (V) and arsenic (III) in water samples using ammonium molybdate and estimation by graphite furnace atomic absorption spectroscopy, J. Hazard. Mater., 149 (2007) 238–242.
  15. K. Anezaki, I. Nukatuska, K. Ohzeki, Determination of arsenic(III) and total arsenic(III,V) in water samples by resin suspension graphite furnace atomic absorption spectrometry, Anal. Sci., 15 (1999) 829–833.
  16. M.H. Arbab-Zavar, M. Hashemi, Evaluation of electrochemical hydride generation for spectrophotometric determination of As(III) by silver diethyldithiocarbamate, Talanta, 52 (2000) 1007–1014.
  17. M. Popp, S. Hann, G. Koellensperger, Environmental application of elemental speciation analysis based on liquid or gas chromatography hyphenated to inductively coupled plasma mass spectrometry – a review, Anal. Chim. Acta, 668 (2010) 114–129.
  18. J.H.T. Luong, E. Majid, K.B. Male, Analytical tools for monitoring arsenic in the environment, The Open Anal. Chem. J., 1 (2007) 7–14.
  19. J.F.R. Paula, R.E.S. Froes-Silva, V.S.T. Ciminelli, Arsenic determination in complex mining residues by ICP OES after ultrasonic extraction, Microchem. J., 104 (2012) 12–16.
  20. K.A. Francesconi, Toxic metal species and food regulations – making a healthy choice, Analyst, 132 (2007) 17–20.
  21. N.B. Issa, A.D. Marinković, L.V. Rajaković, Separation and determination of dimethylarsenate in natural waters, J. Serb. Chem. Soc., 77 (2012) 1–21.
  22. J. Mattusch, R. Wennrich, Determination of anionic, neutral, and cationic species of arsenic by ion chromatography with ICP-MS detection in environmental samples, Anal. Chem., 70 (1998) 3649–3655.
  23. O.T. Butler, A.M. Howe, Development of an international standard for the determination of metals and metalloids in workplace air using ICP-AES: evaluation of sample dissolution procedures through an interlaboratory trial, J. Environ. Monit., 1 (1999) 23–32.
  24. D.E. Mays, A. Hussam, Voltammetric methods for determination and speciation of inorganic arsenic in the environment – a review, Anal. Chim. Acta, 646 (2009) 6–16.
  25. M. Chausseau, C. Roussel, N. Gilon, J.M. Mermet, Optimization of HPLC-ICP-AES for the determination of arsenic species, Fresenius J. Anal. Chem., 366 (2000) 476–480.
  26. K. Van den Broeck, C. Vandecasteele, J.M.C. Geuns, Speciation of arsenic by HPLC-ICP-MS in mung bean seedlings used as a bio-indicator for the arsenic contamination, Anal. Chim. Acta, 361 (1998) 101–111.
  27. S. White, R. Catterick, B., Fairman, K. Webb, Speciation of organo-tin compounds using liquid chromatography–atmospheric pressure ionisation mass spectrometry and liquid chromatography–inductively coupled plasma mass spectrometry as complementary techniques,
    J. Chromatogr. A, 794 (1998) 211–218.
  28. O. Schramel, B. Michalke, A. Kettrup, Analysis of metal species by using electrospray ionization mass spectrometry and capillary electrophoresis–electrospray ionization mass spectrometry, J. Chromatogr. A, 819 (1998) 231–242.
  29. E. Sanz, R. Munoz-Olivas, C. Camara, M.K. Sengupta, S. Ahamed, Arsenic speciation in rice, straw, soil, hair and nails samples from the arsenic-affected areas of middle and lower Ganga Plain, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 42 (2007) 1695–1705.
  30. T. Narukawa, K. Inagaki, T. Kuroiwa, K. Chiba, The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS, Talanta, 77 (2008) 427–432.
  31. M. Welna, A. Szymczycha-Madeja, P. Pohl, Non-chromatographic of As by HG technique—analysis of samples with different matrices, Molecules, 25 (2020) 1–39.
  32. A. D’Ulivo, Chemical vapor generation by tetrahydroborate(III) and other borane complexes in aqueous media: a critical discussion of fundamental processes and mechanisms involved in reagent decomposition and hydride formation, Spectrochim. Acta, Part B, 59 (2004) 793–825.
  33. J.M. Bundaleska, T. Stafilov, S. Arpadjan, Direct analysis of natural waters for arsenic species by hydride generation atomic absorption spectrometry, Int. J. Environ. Anal. Chem., 85 (2005) 199–205.
  34. E. Schmeisser, W. Goessler, N. Kienzl, K.A. Francesconi, Volatile analytes formed from arsenosugars: determination by HPLCHG-ICPMS and implications for arsenic speciation analysis, Anal. Chem., 76 (2004) 418–423.
  35. K. Marschner, S. Musil, I. Miksik, J. Dedina, Investigation of hydride generation from arsenosugras – is it feasible for speciation analysis?, Anal. Chim. Acta, 1008 (2018) 8–17.
  36. K. Marschner, S. Musil, J. Dedina, Demethylation of methylated arsenic species during generation of arsenes with tetrahydridoborate(1-) in acidic media, Anal. Chem., 88 (2016) 6366–6373.
  37. D.P. Moraes, M. Svoboda, T. Matoušek, E.M.M. Flores, J. Dědina, Selective generation of substituted arsines-cryotrappingatomic absorption spectrometry for arsenic speciation analysis in N-methylglucamine antimonate, J. Anal. At. Spectrom., 27 (2012) 1734–1742.
  38. M. Leermakers, W. Baeyens, M. De Gieter, B. Smedts, C. Meert, H.C. De Bisschop, R. Morabito, Ph. Quevauville, Toxic arsenic compounds in environmental samples: speciation and validation, TrAC, Trends Anal. Chem., 25 (2006) 1–10.
  39. K.A. Francesconi, D. Kuehnelt, Application of selected reaction monitoring tandem mass spectrometry to the quantitative determination of an arsenic-containing nucleoside in a crude biological extract, Analyst, 129 (2004) 373–395.
  40. X.C. Le, W.R. Cullen, K.J. Reimer, Speciation of arsenic compounds by HPLC with hydride generation atomic absorption spectrometry and inductively coupled plasma mass spectrometry detection, Talanta, 41 (1994) 495–502.
  41. K. Marschner, S. Musil, J. Dedina, Achieving 100% efficient postcolumn hydride generation for As speciation analysis by atomic fluorescence spectrometry, Anal. Chem., 8 (2016) 4041–4047.
  42. M. Czaplicka, Ł. Bratek, K. Jaworek, J. Bonarski, S. Pawlak, Photo-oxidation of p-arsanilic acid in acidic solutions: kinetics and the identification of by-products and reaction pathways, Chem. Eng. J., 243 (2014) 364–371.
  43. X.C. Le, M. Ma, Speciation of arsenic compounds using ionpair chromatography with atomic spectrometry and mass spectrometry detection, J. Chromatogr. A, 764 (1997) 55–64.
  44. D. Tsalev, M. Sperling, B. Welz, Speciation determination of arsenic in urine by high performance liquid chromatographyhydride generation atomic absorption spectrometry with online ultraviolet photooxidation, Analyst, 123 (1998) 1703–1710.
  45. M. Czaplicka, K. Jaworek, M. Bąk, Study of photodegradation and photooxidation of p-arsanilic acid in water solutions at pH = 7: kinetics and by-products, Environ. Sci. Pollut. Res., 23 (2015) 16927–16935.
  46. T.R. Rude, H. Puchelt, Development of an automated technique for the speciation of arsenic using flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS), Fresenius J. Anal. Chem., 350 (1994) 44–48
  47. Y. Talami, D.T. Bostick, Determination of alkylarsenic acids in pesticide and environmental samples by gas chromatography with a microwave emission spectrometric detection system, Anal. Chem., 47 (1975) 2145–2150.
  48. J. van Elteren, H.A. Das, C.L. De Ligny, J. Agterdenbos, D.J. Bax, Arsenic speciation in aqueous samples using a selective As(III)/As(V) preconcentration in combination with an automatable cryotrapping hydride generation procedure for monomethylarsonic acid and dimethylarsinic acid, J. Radioanal. Nucl. Chem., 179 (1994) 211–219.
  49. S. Musil, A.H. Petursdottir, A. Rabb, H. Gunnlaugsdottir, E. Krupp, J. Fedelmann, Speciation without chromatography using selective hydride generation: inorganic arsenic in rice and samples of marine origin,
    J. Anal. Chem., 86 (2014) 993–999.
  50. R. Regmi, B.F. Milne, J. Fedelmann, Hydride generation activity of arsenosugars and thioarsenicals, J. Anal. Bioanal. Chem., 388 (2007) 775–782.
  51. P. Pohl, W. Zyrnicki, On the transport of some metals into inductively coupled plasma during hydride generation process, Anal. Chim. Acta, 429 (2001) 135–143.
  52. M.A. Wahed, D. Chowdhury, B. Nermell, S.I. Khan, M. Ilias, M. Rahman, L.Å. Persson, M. Vahter, A modified routine analysis of arsenic content in drinking-water in Bangladesh by hydride generation-atomic absorption spectrophotometer, J. Health Popul. Nutr., 24 (2006) 36–41.
  53. O. Burzyńska, I. Siebielska, Źródła oraz metody badan związków aresnu w próbkach środowiskowych, Rocznik Ochrony Środowiska, 14 (2012) 417–426.
  54. M.M. Gomez, M. Kovecs, M.A. Palacios, I. Pizarro, C. Camara, Effect of the mineralization on arsenic determination in marine organisms by hydride generation fluorescence spectroscopy, Microchim. Acta, 150 (2005) 9–14.