References
- A. El Nemr, G.F. El-Said, S. Ragab, A. Khaled, A. El-Sikaily,
The distribution, contamination and risk assessment of heavy
metals in sediment and shellfish from the Red Sea coast, Egypt,
Chemosphere, 165 (2016) 369–380.
- A.M. Idris, T.O. Said, E.I. Brima, T. Sahlabji, M.M. Alghamdi,
A.A. El-Zahhar, M. Arshad, A. El Nemr, Assessment of contents
of selected heavy metals in street dust from Khamees-Mushait
city, Saudi Arabia, using multivariate statistical analysis,
GIS mapping, geochemical indices and health risk, Fresenius
Environ. Bull., 28 (2019) 6059–6069.
- V.S. Aquib Jawed, L.M. Pandey, Engineered nanomaterials and
their surface functionalization for the removal of heavy metals:
a review, J. Water Process Eng., 33 (2020) 1–20.
- A. Alvarez, J.M. Saez, J.S.D. Costa, V.L. Colin, M.S. Fuentes,
S.A. Cuozzo, C.S. Benimeli, M.A. Polti, M.J. Amoroso,
Actinobacteria: current research and perspectives for bioremediation
of pesticides and heavy metals, Chemosphere,
166 (2017) 41–62.
- A. El Nemr, Impact, Monitoring and Management of
Environmental Pollution, Nova Science Publishers, Inc.,
Hauppauge, New York, 2011, 638 p. , ISBN-10: 1608764877,
ISBN-13: 9781608764877.
- A. El Nemr, Environmental Pollution and its Relation to Climate
Change, Nova Science Publishers, Inc., Hauppauge, New York,
2012, 694 p., ISBN-13: 978-1-61761-794-2.
- A. El Nemr, Heavy Metals, Algae and Microbial Activities in
Marine System, Nova Science Publishers, Inc., Hauppauge,
New York, 2015, 663 p. Hard Cover ISBN: 978-1-63482-314-
2, e-Book. ISBN: 978-1-63482-315-9.
- M. Kumar, M. Nandi, K. Pakshirajan, Recent advances in
heavy metal recovery from wastewater by biogenic sulfide
precipitation, J. Environ. Manage., 278 (2021) 111555,
doi: 10.1016/j.jenvman.2020.111555.
- A. El Nemr, Pollution Status, Environmental Protection, and
Renewable Energy Production in Marine Systems, Nova Science
Publishers, Inc., Hauppauge, New York, 2016, Hard Cover
ISBN: 978-1-63484-047-7, e-Book. ISBN: 978-1-63484-282-2.
- E. Malkoc, Ni(II) removal from aqueous solutions using cone
biomass of Thuja orientalis, J. Hazard. Mater. B, 137 (2006)
899–908.
- A. El Nemr, A. El Sikaily, A. Khaled, O. Abdelwahab, Removal of
toxic chromium(VI) from aqueous solution by activated carbon
using Casuarina equisetifolia, Chem. Ecol., 23 (2007) 119–129.
- O. Abdelwahab, A. El Sikaily, A. Khaled, A. El Nemr, Mass
transfer processes of chromium(VI) adsorption onto guava
seeds, Chem. Ecol., 23 (2007) 73–85.
- H. Li, Z. Li, T. Liu, X. Xiao, Z. Peng, L. Deng, A novel
technology for biosorption and recovery hexavalent chromium
in wastewater by bio-functional magnetic beads, Bioresour.
Technol., 99 (2008) 6271–6279.
- M.O.R. Uauy, M. Gonzalez, Essentiality of copper in humans,
Am. J. Clin. Nutr., 67 (1998) 952–959.
- A.K. Sengupta, D. Clifford, S. Subramonian, Chromate ionexchange
process at alkaline pH, Water Res., 20 (1986) 1177–1184.
- E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal
cations by natural zeolites, J. Colloid Interface Sci., 280 (2004)
309–314.
- G. McKay, M.S. Otterburn, A.G. Sweeney, The removal of colour
from effluent using various adsorbents—IV. Silica: equilibria
and column studies, Water Res., 14 (1980) 21–27.
- A. Bhatnagar, A.K. Jain, A comparative adsorption study with
different industrial wastes as adsorbents for the removal of
cationic dyes from water, J. Colloid Interface Sci., 281 (2005)
49–55.
- U. Farooq, J.A. Kozinski, M.A. Khan, M. Athar, Biosorption of
heavy metal ions using wheat based biosorbents – a review of
the recent literature, Bioresour. Technol., 101 (2010) 5043–5053.
- M.A. Hassaan, A. El Nemr, F.F. Madkour, Testing the advanced
oxidation processes on the degradation of Direct Blue 86 dye in
wastewater, Egypt. J. Aquat. Res., 43 (2017) 11–19.
- M.A. Hassaan, A. El Nemr, F.F. Madkour, Advanced oxidation
processes of Mordant Violet 40 dye in freshwater and seawater,
Egypt. J. Aquat. Res., 43 (2017) 1–9.
- A. El Nemr, M.A. Hassaan, F.F. Madkour, Advanced oxidation
process (AOP) for detoxification of Acid red 17 dye solution and
degradation, Environ. Process., 5 (2018) 95–113.
- M.A. El-Nemr, I.M.A. Ismail, N.M. Abdelmonem, S. Ragab,
A. El Nemr, Ozone and ammonium hydroxide modification
of biochar prepared from Pisum sativum peels improves the
adsorption of copper(II) from an aqueous medium, Environ.
Process., 7 (2020) 973–1007.
- B.C.T. Robinson, P. Nigam, Removal of dyes from a synthetic
textile dye effluent by biosorption on apple pomace and wheat
straw, Water Res., 36 (2002) 2824–2830.
- J. Qi, Z. Li, Y. Guo, H. Xu, Adsorption of phenolic compounds
on micro- and mesoporous rice husk-based active carbons,
Mater. Chem. Phys., 87 (2004) 96–101.
- G. Yin, Z. Liu, Q. Liu, W. Wu, The role of different properties of
activated carbon in CO2 adsorption, Chem. Eng. J., 230 (2013)
133–140.
- M.A. El-Nemr, N.M. Abdelmonem, I.M.A. Ismail, S. Ragab,
A. El Nemr, The efficient removal of the hazardous Azo Dye
Acid Orange 7 from water using modified biochar from pea
peels, Desal. Water Treat., 203 (2020) 327–355.
- M.A. El-Nemr, N.M. Abdelmonem, I.M.A. Ismail, S. Ragab,
A. El Nemr, Removal of Acid Yellow 11 dye using novel
modified biochar derived from watermelon Peels, Desal. Water
Treat., 203 (2020) 403–431.
- M.A. El-Nemr, I.M.A. Ismail, N.M. Abdelmonem, A. El Nemr,
S. Ragab, Amination of biochar derived from watermelon peel
by triethylenetetramine and ammonium hydroxide for toxic
chromium removal enhancement, Chin. J. Chem. Eng., 36 (2021)
199–222.
- J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(II)
by adsorption using treated granular activated carbon: batch
and column studies, J. Hazard. Mater. B, 125 (2005) 211–220.
- G. Issabayeva, M.K. Aroua, N.M.N. Sulaiman, Removal of
lead from aqueous solutions on palm shell activated carbon,
Bioresour. Technol., 97 (2006) 2350–2355.
- Q. Shi, A. Terracciano, Y. Zhao, C. Wei, C. Christodoulatos,
X. Meng, Evaluation of metal oxides and activated carbon for
lead removal: kinetics, isotherms, column tests, and the role of
co-existing ions, Sci. Total Environ., 648 (2019) 176–183.
- M. Inyang, B. Gao, Y. Yao, Y. Xue, A.R. Zimmerman,
P. Pullammanappallil, X. Cao, Removal of heavy metals from
aqueous solution by biochars derived from anaerobically
digested biomass, Bioresour. Technol., 110 (2012) 50–56.
- X. Tan, Y. Liu, G. Zeng, X. Wang, X. Hua, Y. Gu, Z. Yang,
Application of biochar for the removal of pollutants from
aqueous solutions, Chemosphere, 125 (2015) 70–85.
- Z. Shen, D. Hou, F. Jin, J. Shi, X. Fan, D.C.W. Tsang, D.S. Alessi,
Effect of production temperature on lead removal mechanisms
by rice straw biochars, Sci. Total Environ., 655 (2019) 751–758.
- A. El Nemr, A.G.M. Shoaib, A. El Sikaily, A.E.-D.A. Mohamed,
A.F. Hassan, Evaluation of cationic Methylene blue dye
removal by high surface area mesoporous nano activated
carbon derived from Ulva lactuca, Environ. Process., 8 (2021)
311–332.
- A. El Nemr, R.M. Aboughaly, A. El Sikaily, S. Ragab,
M.S. Masoud, M.S. Ramadan, Microporous nano-activated
carbon type I derived from orange peel and its application for
Cr(VI) removal from aquatic environment, Biomass Convers.
Biorefin., (2020), doi: 10.1007/s13399-020-00995-5 (in press).
- A.G.M. Shoaib, A. El-Sikaily, A. El Nemr, A.E.-D.A. Mohamed,
A.A. Hassan, Preparation and characterization of highly surface
area activated carbons followed Type IV from marine red alga
(Pterocladia capillacea) by zinc chloride activation, Biomass
Convers. Biorefin., (2020), doi: 10.1007/s13399-020-00760-8 (in
press).
- A.G.M. Shoaib, A. El-Sikaily, A. El Nemr, A.E.-D.A. Mohamed,
A.A. Hassan, Testing the carbonization condition for high
surface area preparation of activated carbon followed Type IV
from green alga Ulva lactuca, Biomass Convers. Biorefin., (2020),
doi: 10.1007/s13399-020-00823-w (in press).
- T.M. Huggins, A. Haeger, J.C. Biffinger, Z.J. Ren, Granular
biochar compared with activated carbon for wastewater
treatment and resource recovery, Water Res., 94 (2016) 225–232.
- A. El Nemr, R.M. Aboughaly, A. El Sikaily, S. Ragab,
M.S. Masoud, M.S. Ramadan, Utilization of sugarcane bagasse/ZnCl2 for sustainable production of microporous nano activated
carbons of type I for toxic Cr(VI) removal from aqueous
environment, Biomass Convers. Biorefin., (2021), doi: 10.1007/s13399-021-01445-6 (in press).
- T. Sahlabji, M.A. El-Nemr, A. El Nemr, S. Ragab, M.M. Alghamdi,
A.A. El-Zahhar, A.M. Idris, T.O. Said, High surface area
microporous activated carbon from Pisum sativum peels for
hexavalent chromium removal from aquatic environment, Toxin
Rev., (2021), doi: 10.1080/15569543.2021.1908361 (in press).
- M. Uchimiya, L.H. Wartelle, K.T. Klasson, C.A. Fortier,
I.M. Lima, Influence of pyrolysis temperature on biochar
property and function as a heavy metal sorbent in soil, J. Agric.
Food Chem., 59 (2011) 2501–2510.
- C. Chen, H. Liu, T. Chen, An insight into the removal of Pb(II),
Cu(II), Co(II), Cd(II), Zn(II), Ag(I), Hg(I), Cr(VI) by Na(I)-
montmorillonite and Ca(II)-montmorillonite, Appl. Clay Sci.,
118 (2015) 239–247.
- T. Chen, Z. Zhou, R. Han, R. Meng, H. Wang, W. Lu, Adsorption
of cadmium by biochar derived from municipal sewage sludge:
impact factors and adsorption mechanism, Chemosphere,
134 (2015) 286–293.
- D. Chen, Z. Zheng, K. Fu, Z. Zeng, J. Wang, M. Lu, Torrefaction
of biomass stalk and its effect on the yield and quality of
pyrolysis products, Fuel, 159 (2015) 27–32.
- Y. Shen, Chars as carbonaceous adsorbents/catalysts for tar
elimination during biomass pyrolysis or gasification, Renewable
Sustainable Energy Rev., 43 (2015) 281–295.
- L. Wang, Y. Wang, F. Ma, V. Tankpa, S. Bai, X. Guo, X. Wang,
Mechanisms and reutilization of modified biochar used for
removal of heavy metals from wastewater: a review, Sci. Total
Environ., 668 (2019) 1298–1309.
- M. Kobya, E. Demirbas, E. Senturk, M. Ince, Adsorption of
heavy metal ions from aqueous solutions by activated carbon
prepared from apricot stone, Bioresour. Technol., 96 (2005)
1518–1521.
- I. Kula, M. Uğurlu, H. Karaoğlu, A. Çelik, Adsorption of Cd(II)
ions from aqueous solutions using activated carbon prepared
from olive stone by ZnCl2 activation, Bioresour. Technol.,
99 (2008) 492–501.
- T. Budinova, N. Petrov, J. Parra, V. Baloutzov, Use of an activated
carbon from antibiotic waste for the removal of Hg(II) from
aqueous solution, J. Environ. Manage., 88 (2008) 165–172.
- Y. Sudaryanto, S.B. Hartono, W. Irawaty, H. Hindarso, S. Ismadji,
High surface area activated carbon prepared from cassava peel
by chemical activation, Bioresour. Technol., 97 (2006) 734–739.
- D. Borah, S. Satokawa, S. Kato, T. Kojima, Sorption of As(V)
from aqueous solution using acid modified carbon black,
J. Hazard. Mater., 162 (2009) 1269–1277.
- A. Reffas, V. Bernardet, B. David, L. Reinert, M.B. Lehocine, M.
Dubois, N. Batisse, L. Duclaux, Carbons prepared from coffee
grounds by H3PO4 activation: characterization and adsorption
of methylene blue and Nylosan Red N-2RBL, J. Hazard. Mater.,
175 (2010) 779–788.
- P.D. Pathak, S.A. Mandavgane, B.D. Kulkarni, Characterizing
fruit and vegetable peels as bioadsorbents, Curr. Sci., 110 (2016)
2114–2124.
- N. Feng, X. Guo, S. Liang, Y. Zhu, J. Liu, Biosorption of heavy
metals from aqueous solutions by chemically modified orange
peel, J. Hazard. Mater., 185 (2011) 49–54.
- J.R. Memon, S.Q. Memon, M.I. Bhanger, A. El-Turki,
K.R. Hallam, G.C. Allen, Banana peel: a green and economical
sorbent for the selective removal of Cr(VI) from industrial
wastewater, Colloids Surf., B, 70 (2009) 232–237.
- S. Schiewer, S.B. Patil, Modeling the effect of pH on biosorption
of heavy metals by citrus peels, J. Hazard. Mater., 157 (2008)
8–17.
- M. Iqbal, A. Saeed, S.I. Zafar, FTIR spectrophotometry, kinetics and
adsorption isotherms modeling, ion exchange, and EDX analysis
for understanding the mechanism of Cd2+ and Pb2+ removal by
mango peel waste, J. Hazard. Mater., 164 (2009) 161–171.
- K.H. Chong, B. Volesky, Description of two-metal biosorption
equilibria by Langmuir-type models, Biotechnol. Bioeng.,
47 (1995) 451–460.
- S.J. Gregg, K.S.W. Sing, Adsorption Surface Area and Porosity,
2nd ed., Academic Press Inc., London, 1982.
- F. Rouquerol, J. Rouquerol, K.S.W. Sing, Adsorption by Powders
and Porous Solids, Academic Press Inc., London, 1999.
- E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of
pore volume and area distributions in porous substances. I.
Computations from nitrogen isotherms, J. Am. Chem. Soc.,
73 (1951) 373–380.
- I. Langmuir, The constitution and fundamental properties of
solids and liquids, J. Am. Chem. Soc., 38 (1916) 2221–2295.
- M. Doğan, M. Alkan, Y. Onganer, Adsorption of methylene
blue from aqueous solution onto perlite, Water Air Soil Pollut.,
120 (2000) 229–249.
- D.G. Kinniburgh, General purpose adsorption isotherms,
Environ. Sci. Technol., 20 (1986) 895–904.
- E. Longhinotti, F. Pozza, L. Furlan, M.D.N.D. Sanchez, M. Klug,
M.C.M. Laranjeira, V.T. Favere, Adsorption of anionic dyes on
the biopolymer chitin, J. Braz. Chem. Soc., 9 (1998) 435–440.
- A. El Nemr, A. El-Sikaily, A. Khaled, Modeling of adsorption
isotherms of Methylene blue onto rice husk activated carbon,
Egypt. J. Aquat. Res., 36 (2010) 403–425.
- H.M.F. Freundlich, Über die adsorption inlösungen, Z. Phys.
Chem. (Leipzig), 57A (1906) 385–470.
- M.J. Temkin, V. Pyzhev, Kinetics of ammonia synthesis on
promoted iron catalysts, Acta Physiochim, URSS, 12 (1940)
217–222.
- D. Kavitha, C. Namasivayam, Experimental and kinetic studies
on methylene blue adsorption by coirpith carbon, Bioresour.
Technol., 98 (2007) 14–21.
- C. Aharoni, M. Ungarish, Kinetics of activated chemisorption.
Part 2. Theoretical models, J. Chem. Soc. Faraday Trans.,
73 (1977) 456–464.
- C. Aharoni, D.L. Sparks, Kinetics of Soil Chemical Reactions—A
Theoretical Treatment, D.L. Sparks, D.L. Suarez, Eds., Rate of
Soil Chemical Processes, Soil Sci. Soc. America, Madison, WI,
1991, pp. 1–18.
- X.S. Wang, Y. Qin, Equilibrium sorption isotherms for of Cu2+ on
rice bran, Process Biochem., 40 (2005) 677–680.
- C.I. Pearce, J.R. Lioyd, J.T. Guthrie, The removal of color from
textile wastewater using whole bacterial cells:
a review, Dyes
Pigm., 58 (2003) 179–196.
- G. Akkaya, A. Özer, Adsorption of Acid Red 274 (AR 274) on
Dicranella varia: determination of equilibrium and kinetic model
parameters, Process Biochem., 40 (2005) 3559–3568.
- L.V. Radushkevich, Potential theory of sorption and structure of
carbons, Zhurnal Fizicheskoi Khimii, 23 (1949) 1410–1420.
- M.M. Dubinin, The potential theory of adsorption of gases and
vapors for adsorbents with energetically non-uniform surface,
Chem. Rev., 60 (1960) 235–266.
- M.M. Dubinin, Modern state of the theory of volume filling of
micropore adsorbents during adsorption of gases and steams
on carbon adsorbent, Zhurnal Fizicheskoi Khimii, 39 (1965)
1305–1317.
- S. Lagergren, Zurtheorie der sogenannten adsorption
gelosterstoffe, Kungliga Svenska Vetenskapsakademiens,
Handlingar, 24 (1898) 1–39.
- Y.S. Ho, G. McKay, D.A.J. Wase, C.F. Foster, Study of the
sorption of divalent metal ions on to peat, Adsorpt. Sci. Technol.,
18 (2000) 639–650.
- J. Zeldowitsch, Über den mechanismus derkatalytischen
oxidation von CO and MnO2, Acta Physicochim. URSS, 1 (1934)
364–449.
- S.H. Chien, W.R. Clayton, Application of Elovich equation to
the kinetics of phosphate release and sorption on soils, Soil Sci.
Soc. Am. J., 44 (1980) 265–268.
- D.L. Sparks, Kinetics of Reaction in Pure and Mixed Systems, in
Soil Physical Chemistry, CRC Press, Boca Raton, 1986.
- W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from
solution, J. Sanit. Eng. Div. Am. Soc. Civ. Eng., 89 (1963) 31–60.
- K. Srinivasan, N. Balasubramanian, T.V. Ramakrishan, Studies
on chromium removal by rice husk carbon, Ind. J. Environ.
Health, 30 (1988) 376–387.
- J.F. Porter, G. McKay, K.H. Choy, The prediction of sorption
from a binary mixture of acidic des using single-and mixedisotherm
variants of the ideal adsorbed solute theory, Chem.
Eng. Sci., 54 (1999) 5863–5885.
- S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of
optimized isotherm models for basic dye adsorption by kudzu,
Bioresour. Technol., 88 (2003) 143–152.
- Y.S. Ho, W.T. Chiu, C.C. Wang, Regression analysis for the
sorption isotherms of basic dyes on sugarcane dust, Bioresour.
Technol., 96 (2005) 1285–1291.
- J. Fu, Z. Chen, M. Wang, S. Liu, J. Zhang, J. Zhang, R. Han,
Q. Xu, Adsorption of methylene blue by a high-efficiency
adsorbent (polydopamine microspheres): kinetics, isotherm,
thermodynamics and mechanism analysis, Chem. Eng. J.,
259 (2015) 53–61.
- S. Chowdhury, S. Chakraborty, P. Saha, Biosorption of Basic
Green 4 from aqueous solution by Ananas comosus (pineapple)
leaf powder, Colloids Surf., B, 84 (2011) 520–527.
- E.S. Mobasherpour, M. Pazouki, Comparative of the removal
of Pb2+, Cd2+ and Ni2+ by nano crystallite hydroxyapatite from
aqueous solutions: adsorption isotherm study, Arabian J.
Chem., 5 (2012) 439–446.
- B. Yu, Y. Zhang, A. Shukla, S.S. Shukla, K.L. Dorris, The
removal of heavy metals from aqueous solutions by sawdust
adsorption—removal of lead and comparison of its adsorption
with copper, J. Hazard. Mater. B, 84 (2001) 83–94.
- C. Huang, C. Huang, A.L. Morehart, The removal of Cu(II) from
dilute aqueous solutions by Saccharomyces cerevisiae, Water Res.,
24 (1990) 433–439.
- G. Annadural, R.S. Juang, D.J. Lee, Adsorption of heavy metals
from water using banana and orange peels, Water Sci. Technol.,
47 (2003) 185–190.
- R. Razmovski, M. Šćiban, Biosorption of Cr(VI) and Cu(II) by
waste tea fungal biomass, Ecol. Eng., 34 (2008) 179–186.
- J.R. Lujan, D.W. Darnall, P.C. Stark, G.D. Rayson, J.L. Gardea-Torresdey, Metal ion binding by algae and higher plant tissues:
a phenomenological study of solution pH dependence, Solvent
Extr. Ion Exch., 12 (1994) 803–816.
- Y.-S. Ho, Removal of copper ions from aqueous solution by tree
fern, Water Res., 37 (2003) 2323–2330.
- C. Liu, H.H. Ngo, W. Guo, K.-L. Tung, Optimal conditions
for preparation of banana peels, sugarcane bagasse and
watermelon rind in removing copper from water, Bioresour.
Technol., 119 (2012) 349–354.