References

  1. M.N. Chileshe, S. Syampungani, E.S. Festin, M. Tigabu, A. Daneshvar, P.C. Odén, Physico-chemical characteristics and heavy metal concentrations of copper mine wastes in Zambia: implications for pollution risk and restoration, J. For. Res., 31 (2020) 1283–1293.
  2. T.E. Aniyikaiye, T. Oluseyi, J.O. Odiyo, J.N. Edokpayi, Physicochemical analysis of wastewater discharge from selected paint industries in Lagos, Nigeria, Int. J. Environ. Res. Public Health, 16 (2019) 1235, doi:10.3390/ijerph16071235.
  3. G.K. Weldegebrieal, Synthesis method, antibacterial and photocatalytic activity of ZnO nanoparticles for azo dyes in wastewater treatment: a review, Inorg. Chem. Commun., 120 (2020) 108140, doi:10.1016/j.inoche.2020.108140.
  4. K.M. Namwanja, S.M. Siachoono, A.M. Yambayamba, L. Chama, The impact of mine effluents on the water quality and macrophyte plant communities in the Kifubwa Stream, Solwezi, Zambia, Nat. Resour., 9 (2018) 198–211.
  5. E. Ngumba, A. Gachanja, J. Nyirenda, J. Maldonado, T. Tuhkanen, Occurrence of antibiotics and antiretroviral drugs in source-separated urine, groundwater, surface water and wastewater in the peri-urban area of Chunga in Lusaka, Zambia, Water SA, 46 (2020) 278–284.
  6. E. Lema, R. Machunda, K.N. Njau, Agrochemicals use in horticulture industry in Tanzania and their potential impact to water resources, Int. J. Biol. Chem. Sci., 8 (2014) 831–842.
  7. Y. Ikenaka, S.M. Nakayama, K. Muzandu, K. Choongo, H. Teraoka, N. Mizuno, M. Ishizuka, Heavy metal contamination of soil and sediment in Zambia, Afr. J. Environ. Sci. Technol., 4 (2010) 729–739.
  8. G.N. Ngweme, E.K. Atibu, D.M.M. Al Salah, P.M. Muanamoki, G.M. Kiyombo, C.K. Mulaji, J.-P. Otamonga, J.W. Poté, Heavy metal concentration in irrigation water, soil and dietary risk assessment of Amaranthus viridis grown in peri-urban areas in Kinshasa, Democratic Republic of the Congo, Watershed Ecol. Environ., 2 (2020) 16–24.
  9. G.A. Engwa, P.U. Ferdinand, F.N. Nwalo, M.N. Unachukwu, Mechanism and Health Effects of Heavy Metal Toxicity in Humans, O. Karcioglu, B. Arslan, Eds., Poisoning in the Modern World-New Tricks for an Old Dog?, IntechOpen, 2019, pp. 1–23.
  10. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metals toxicity and the environment, EXS, 101 (2012) 133–164.
  11. WHO, Guidelines for Drinking-Water Quality, WHO Chronicle, 38 (2011) 104–108.
  12. E.A. Clarke, R. Anliker, Organic Dyes and Pigments, In: Anthropogenic Compounds, The Handbook of Environmental Chemistry, Vol. 3/3A, Springer, Berlin, Heidelberg, 1980, pp. 181–215.
  13. Q. Feng, H. Cheng, F. Chen, X. Zhou, P. Wang, Y. Xie, Investigation of cationic dye adsorption from water onto acetic acid lignin, J. Wood Chem. Technol., 36 (2016) 173–181.
  14. Z. Sun, K. Qu, Y. Cheng, Y. You, Z. Huang, A. Umar, Y.S. Ibrahim, H. Algadi, L. Castañeda, H.A. Colorado, Corncob-derived activated carbon for efficient adsorption dye in sewage, ES Food Agrofor., 4 (2021) 61–73.
  15. H. Sudrajat, A. Susanti, D.K.Y. Putri, S. Hartuti, Mechanistic insights into the adsorption of methylene blue by particulate durian peel waste in water, Water Sci. Technol., 84 (2021) 1774–1792.
  16. X. Ma, Y. Liu, Q. Zhang, S. Sun, X. Zhou, Y. Xu, A novel natural lignocellulosic biosorbent of sunflower stem-pith for textile cationic dyes adsorption, J. Cleaner Prod., 331 (2021) 129878, doi: 10.1016/j.jclepro.2021.129878.
  17. S.H. Paiman, M.A. Rahman, T. Uchikoshi, N. Abdullah, M.H.D. Othman, J. Jaafar, K.H. Abas, A.F. Ismail, Functionalization effect of Fe-type MOF for methylene blue adsorption, J. Saudi Chem. Soc., 24 (2020) 896–905.
  18. M. Nazaripour, M.A.M. Reshadi, S.A. Mirbagheri, M. Nazaripour, A. Bazargan, Research trends of heavy metal removal from aqueous environments, J. Environ. Manage., 287 (2021) 112322, doi:10.1016/j.jenvman.2021.112322.
  19. B. Qiu, X. Tao, H. Wang, W. Li, X. Ding, H. Chu, Biochar as a low-cost adsorbent for aqueous heavy metal removal: a review, J. Anal. Appl. Pyrolysis, 155 (2021) 105081, doi: 10.1016/j. jaap.2021.105081.
  20. M. Yadav, G. Singh, R.N. Jadeja, Physical and Chemical Methods for Heavy Metal Removal, P. Singh, R. Singh, V. Kumar Singh, R. Bhadouria, Eds., Pollutants and Water Management: Resources, Strategies and Scarcity, 2021, pp. 377–397.
  21. U.W.R. Siagian, K. Khoiruddin, A.K. Wardani, P.T.P. Aryanti, I. Nyoman Widiasa, G. Qiu, Y.P. Ting, I. Gede Wenten, Highperformance ultrafiltration membrane: recent progress and its application for wastewater treatment, Curr. Pollut. Rep., 7 (2021) 448–462, doi: 10.1007/s40726-021-00204-5.
  22. S. Xue, Y. Xiao, G. Wang, J. Fan, K. Wan, Q. He, M. Gao, Z. Miao, Adsorption of heavy metals in water by modifying Fe3O4 nanoparticles with oxidized humic acid, Colloids Surf., A, 616 (2021) 126333, doi:10.1016/j.colsurfa.2021.126333.
  23. M. Kanoje, M. Bhor, S. Toche, P. Jadhav, Removal of zinc from industrial wastewater using rice husk and activated carbon, Int. Res. J. Eng. Technol., 8 (2021) 2188–2190.
  24. N.A.A. Qasem, R.H. Mohammed, D.U. Lawal, Removal of heavy metal ions from wastewater: a comprehensive and critical review, npj Clean Water, 4 (2021) 1–15, doi: 10.1038/s41545-021-00127-0.
  25. M.S. Manna, C. Bhaumik, Opportunities and Challenges, Inamuddin, M.I. Ahamed, E. Lichtfouse, T. Altalhi, Eds., Remediation of Heavy Metals. Environmental Chemistry for a Sustainable World, Vol. 70, Springer, Cham, 2021, pp. 347–366.
  26. A. Tripathi, M.R. Ranjan, Heavy metal removal from wastewater using low cost adsorbents, J. Biorem. Biodegrad., 6 (2015) 315.
  27. Z. Zhang, T. Wang, H. Zhang, Y. Liu, B. Xing, Adsorption of Pb(II) and Cd(II) by magnetic activated carbon and its mechanism, Sci. Total Environ., 757 (2021) 143910, doi: 10.1016/j.scitotenv.2020.143910.
  28. D.R. Lobato-Peralta, E. Duque-Brito, A. Ayala-Cortés, D.M. Arias, A. Longoria, A.K. Cuentas-Gallegos,
    P.J. Sebastian, P.U. Okoye, Advances in activated carbon modification, surface heteroatom configuration, reactor strategies, and regeneration methods for enhanced wastewater treatment, J. Environ. Chem. Eng., 9 (2021) 105626, doi: 10.1016/j.jece.2021.105626.
  29. H. Yi, K. Nakabayashi, S.-H. Yoon, J. Miyawaki, Pressurized physical activation: a simple production method for activated carbon with a highly developed pore structure, Carbon, 183 (2021) 735–742.
  30. J. Nyirenda, K. Zombe, G. Kalaba, C. Siabbamba, I. Mukela, Exhaustive valorization of cashew nut shell waste as a potential bioresource material, Sci. Rep., 11 (2021) 1–14, doi: 10.1038/s41598-021-91571-y.
  31. G. Kaur, N. Singh, A. Rajor, Adsorption of doxycycline hydrochloride onto powdered activated carbon synthesized from pumpkin seed shell by microwave-assisted pyrolysis, Environ. Technol. Innovation, 23 (2021) 101601, doi: 10.1016/j.eti.2021.101601.
  32. E.R. Raut, A.B. Thakur, A.R. Chaudhari, Review on toxic metal ions removal by using activated carbon prepared from natural biomaterials, J. Phys. Conf. Ser., 1913 (2021) 012091.
  33. Y. Gokce, S. Yaglikci, E. Yagmur, A. Banford, Z. Aktas, Adsorption behaviour of high performance activated carbon from demineralised low rank coal (Rawdon) for methylene blue and phenol, J. Environ. Chem. Eng., 9 (2021) 104819, doi: 10.1016/j.jece.2020.104819.
  34. M. Om Prakash, G. Raghavendra, S. Ojha, M. Panchal, Characterization of porous activated carbon prepared from arhar stalks by single step chemical activation method, Mater. Today: Proc., 39 (2021) 1476–1481.
  35. L. Pandey, S. Sarkar, A. Arya, A.L. Sharma, A. Panwar, R.K. Kotnala, A. Gaur, Fabrication of activated carbon electrodes derived from peanut shell for high-performance supercapacitors, Biomass Convers. Biorefin., (2021) 1–10, doi: 10.1007/s13399-021-01701-9.
  36. P. Senthil Kumar, S. Ramalingam, R.V. Abhinaya, K.V. Thiruvengadaravi, P. Baskaralingam, S. Sivanesan, Lead(II) adsorption onto sulphuric acid treated cashew nut shell, Sep. Sci. Technol., 46 (2011) 2436–2449.
  37. A.M. Alkherraz, A.K. Ali, K.M. Elsherif, Removal of Pb(II), Zn(II), Cu(II) and Cd(II) from aqueous solutions by adsorption onto olive branches activated carbon: equilibrium and thermodynamic studies, Chem. Int., 6 (2020) 11–20.
  38. Z.M. Yunus, A. Al-Gheethi, N. Othman, R. Hamdan, N.N. Ruslan, Removal of heavy metals from mining effluents in tile and electroplating industries using honeydew peel activated carbon: a microstructure and techno-economic analysis, J. Cleaner Prod., 251 (2020) 119738, doi: 10.1016/j.jclepro.2019.119738.
  39. V. Nejadshafiee, M.R. Islami, Intelligent-activated carbon prepared from pistachio shells precursor for effective adsorption of heavy metals from industrial waste of copper mine, Environ. Sci. Pollut. Res., 27 (2020) 1625–1639.
  40. V. Nejadshafiee, M.R. Islami, Bioadsorbent from magnetic activated carbon hybrid for removal of dye and pesticide, ChemistrySelect, 5 (2020) 8814–8822.
  41. T.M. Alslaibi, I. Abustan, M.A. Ahmad, A.A. Foul, Kinetics and equilibrium adsorption of iron(II), lead(II), and copper(II) onto activated carbon prepared from olive stone waste, Desal. Water Treat., 52 (2014) 7887–7897.
  42. R. Srivastava, D.C. Rupainwar, A comparative evaluation for adsorption of dye on Neem bark and Mango bark powder, Indian J. Chem. Technol., 18 (2011) 67–75.
  43. A.R. Kaveeshwar, S.K. Ponnusamy, E.D. Revellame, D.D. Gang, M.E. Zappi, R. Subramaniam, Pecan shell based activated carbon for removal of iron(II) from fracking wastewater: adsorption kinetics, isotherm and thermodynamic studies, Process Saf. Environ. Prot., 114 (2018) 107–122.
  44. P. Mishra, K. Singh, U. Dixit, Adsorption, kinetics and thermodynamics of phenol removal by ultrasound-assisted sulfuric acid-treated pea (Pisum sativum) shells, Sustainable Chem. Pharm., 22 (2021) 100491, doi:10.1016/j.scp.2021.100491.
  45. J.S. Piccin, G. Dotto, L.A.A. Pinto, Adsorption isotherms and thermochemical data of FDandC Red N°40 binding by chitosan, Braz. J. Chem. Eng., 28 (2011) 295–304.
  46. O. Üner, Ü. Geçgel, Y. Bayrak, Adsorption of methylene blue by an efficient activated carbon prepared from Citrullus lanatus rind: kinetic, isotherm, thermodynamic, and mechanism analysis, Water, Air, Soil Pollut., 227 (2016) 1–15, doi: 10.1007/s11270-016-2949-1.
  47. M.S. Abdelbassit, K.R. Alhooshani, T.A. Saleh, Silica nanoparticles loaded on activated carbon for simultaneous removal of dichloromethane, trichloromethane, and carbon tetrachloride, Adv. Powder Technol., 27 (2016) 1719–1729.
  48. M.S. Santana, R.P. Alves, L.S. Santana, M.A. Gonçalves, M.C. Guerreiro, Structural, inorganic, and adsorptive properties of hydrochars obtained by hydrothermal carbonization of coffee waste, J. Environ. Manage., 302 (2022) 114021, doi: 10.1016/j. jenvman.2021.114021.
  49. Darmadi, Mahidin, S.S. Azzahra, M. Masrura, Adsorption of mercury(II) ion in aqueous solution by using bentonite-based monolith, Key Eng. Mater., 885 (2021) 77–84.
  50. M.N. Alnajrani, O.A. Alsager, Removal of antibiotics from water by polymer of intrinsic microporosity: isotherms, kinetics, thermodynamics, and adsorption mechanism, Sci. Rep., 10 (2020) 1–14, doi:10.1038/s41598-020-57616-4.
  51. A.N. Kani, E. Dovi, F.M. Mpatani, Z. Li, R. Han, L. Qu, Tiger nut residue as a renewable adsorbent for methylene blue removal from solution: adsorption kinetics, isotherm, and thermodynamic studies, Desal. Water Treat., 191 (2020) 426–437.
  52. K.H. Karim, Copper adsorption behavior in some calcareous soils using Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich models, J. Soil Sci. Agric. Eng., 11 (2020) 27–34.
  53. P.M. Sanka, M.J. Rwiza, K.M. Mtei, Removal of selected heavy metal ions from industrial wastewater using rice and corn husk biochar, Water, Air, Soil Pollut., 231 (2020) 1–13, doi: 10.1007/ s11270-020-04624-9.
  54. R. Gupta, S.K. Gupta, D.D. Pathak, Selective adsorption of toxic heavy metal ions using guanine-functionalized mesoporous silica [SBA-16-g] from aqueous solution, Microporous Mesoporous Mater., 288 (2019) 109577, doi: 10.1016/j. micromeso.2019.109577.
  55. B. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa, M. Zenasni, Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: characteristics, isotherm, kinetic and thermodynamic studies, J. Mater. Environ. Sci., 4 (2013) 482–491.
  56. N. Vučković, M. Nikodijević, D. Đorđеvić, The study of direct dye sorption on flax fibers during dyeing, Chem. Ind. Chem. Eng. Q., 27 (2021) 255–263.
  57. R. Ediati, M.A. Setyani, D.O. Sulistiono, E. Santoso, D. Hartanto, M.M.A.B. Abdullah, Optimization of the use of mother liquor in the synthesis of HKUST-1 and their performance for removal of chromium(VI) in aqueous solutions, J. Water Process Eng., 39 (2021) 101670, doi: 10.1016/j.jwpe.2020.101670.
  58. M.E. González-López, C.M. Laureano-Anzaldo, A.A. Pérez-Fonseca, M. Arellano, J.R. Robledo-Ortíz, A critical overview of adsorption models linearization: methodological and statistical inconsistencies, Sep. Purif. Rev., (2021) 1–15, doi: 10.1080/15422119.2021.1951757.
  59. G.K. Rajahmundry, C. Garlapati, P.S. Kumar, R.S. Alwi, D.-V.N. Vo, Statistical analysis of adsorption isotherm models and its appropriate selection, Chemosphere, 276 (2021) 130176, doi:10.1016/j.chemosphere.2021.130176.
  60. A. Agarwal, M. Rastogi, N.B. Singh, Agricultural Wastes Utilization in Water Purification, in: Inorganic-Organic Composites for Water and Wastewater Treatment, Vol. 1, Springer, Hong Kong, 2022, pp. 147–168.
  61. M. Sadani, T. Rasolevandi, H. Azarpira, A.H. Mahvi, M. Ghaderpoori, S.M. Mohseni, A. Atamaleki, Arsenic selective adsorption using a nanomagnetic ion imprinted polymer: optimization, equilibrium, and regeneration studies, J. Mol. Liq., 317 (2020) 114246, doi: 10.1016/j.molliq.2020.114246.
  62. K.A.M. Said, N.Z. Ismail, R.L. Jama’in, N.A.M. Alipah, N.M. Sutan, G.G. Gadung, R. Baini, N.S.A. Zauzi, Application of Freundlich and Temkin isotherm to study the removal of Pb(II) via adsorption on activated carbon equipped polysulfone membrane, Int. J. Eng. Technol., 7 (2018) 91–93.
  63. S. Tan, K. Saito, M.T.W. Hearn, Isothermal modelling of protein adsorption to thermo‐responsive polymer grafted Sepharose Fast Flow sorbents, J. Sep. Sci., 44 (2021) 1884–1892.
  64. K. Nuithitikul, R. Phromrak, W. Saengngoen, Utilization of chemically treated cashew-nut shell as potential adsorbent for removal of Pb(II) ions from aqueous solution, Sci. Rep., 10 (2020) 1–14,
    doi: 10.1038/s41598-020-60161-9.
  65. K.P.D.A. N’goran, D. Diabaté, K.M. Yao, N.L.B. Kouassi, U.P. Gnonsoro, K.C. Kinimo, A. Trokourey, Lead and cadmium removal from natural freshwater using mixed activated carbons from cashew and shea nut shells, Arabian J. Geosci., 11 (2018) 1–12, doi: 10.1007/s12517-018-3862-2.
  66. V. Manirethan, R.M. Balakrishnan, Batch and continuous studies on the removal of heavy metals using biosynthesised melanin impregnated activated carbon, Environ. Technol. Innovation, 20 (2020) 101085, doi:10.1016/j.eti.2020.101085.
  67. R. Shahrokhi-Shahraki, C. Benally, M.G. El-Din, J. Park, High efficiency removal of heavy metals using tire-derived activated carbon vs commercial activated carbon: insights into the adsorption mechanisms, Chemosphere, 264 (2021) 128455, doi: 10.1016/j.chemosphere.2020.128455.
  68. G.K.R. Angaru, Y.-L. Choi, L.P. Lingamdinne, J.-S. Choi, D.-S. Kim, J.R. Koduru, J.-K. Yang, Y.-Y. Chang, Facile synthesis of economical feasible fly ash–based zeolite–supported nano zerovalent iron and nickel bimetallic composite for the potential removal of heavy metals from industrial effluents, Chemosphere, 267 (2021) 128889, doi: 10.1016/j.chemosphere.2020.128889.
  69. E.K. Leizou, M.A. Ashraf, A.J.K. Chowdhury, H. Rashid, Adsorption studies of Pb2+ and Mn2+ ions on low-cost adsorbent: unripe plantain (Musa paradisiaca) peel biomass, Acta Chem. Malaysia (ACMY), 2 (2018) 11–15.
  70. K. Sudha Rani, B. Srinivas, K. GouruNaidu, K.V. Ramesh, Removal of copper by adsorption on treated laterite, Mater. Today: Proc., 5 (2018) 463–469.
  71. H. Sivasankari, K. Ramesh, A. Rajappa, Influence of acid and base surface modification on Cr(VI) ions adsorption onto activated carbons prepared from bark of Thespesia populnea - isotherm and thermodynamics study, J. Adv. Sci. Res., 12 (2021) 314–324.
  72. M. Shafiq, A. Alazba, M.T. Amin, Removal of heavy metals from wastewater using date palm as a biosorbent: a comparative review, Sains Malaysiana, 47 (2018) 35–49.
  73. U. Maheshwari, Removal of Metal Ions From Wastewater Using Adsorption: Experimental and Theoretical Studies, Birla Institute of Technology and Science, Pilani, Thesis, 2015.
  74. M.U. Tahir, X. Su, M. Zhao, Y. Liao, R. Wu, D. Chen, Preparation of hydroxypropyl-cyclodextrin-graphene/
    Fe3O4 and its adsorption properties for heavy metals, Surf. Interfaces, 16 (2019) 43–49.
  75. L. Dong, L. Hou, Z. Wang, P. Gu, G. Chen, R. Jiang, A new function of spent activated carbon in BAC process: removing heavy metals by ion exchange mechanism, J. Hazard. Mater., 359 (2018) 76–84.
  76. K.H. Chu, Revisiting the Temkin isotherm: dimensional inconsistency and approximate forms, Ind. Eng. Chem. Res., 60 (2021) 13140–13147.
  77. E. Ernest, O. Onyeka, C.M. Aburu, C.C. Aniobi, J.O. Ndubuisi, Adsorption efficiency of activated carbon produced from corn cob for the removal of cadmium ions from aqueous solution, Acad. J. Chem., 4 (2019) 12–20.
  78. S. Abdulrazak, K. Hussaini, H.M. Sani, Evaluation of removal efficiency of heavy metals by low-cost activated carbon prepared from African palm fruit, Appl. Water Sci., 7 (2017) 3151–3155.
  79. T. Van Tran, Q.T.P. Bui, T.D. Nguyen, N.T.H. Le, L.G. Bach, A comparative study on the removal efficiency of metal ions (Cu2+, Ni2+, and Pb2+) using sugarcane bagasse-derived ZnCl2-activated carbon by the response surface methodology, Adsorpt. Sci. Technol., 35 (2017) 72–85.
  80. S. Ayub, A.A. Mohammadi, M. Yousefi, F. Changani, Performance evaluation of agro-based adsorbents for the removal of cadmium from wastewater, Desal. Water Treat., 142 (2019) 293–299.
  81. S. Saputro, L. Mahardiani, M. Masykuri, A.Z. Jazuli, The effectiveness of the activated carbon from coconut shell and corn cob to adsorb Pb(II) ion and it’s analysis using solid-phase spectrophotometry, IOP Conf. Ser.: Mater. Sci. Eng., 578 (2019) 012020.
  82. A.H. Jawad, S.A. Mohammed, M.S. Mastuli, M.F. Abdullah, Carbonization of corn (Zea mays) cob agricultural residue by one-step activation with sulfuric acid for methylene blue adsorption, Desal. Water Treat., 118 (2018) 342–351.
  83. C. Yu, H. Wang, M. Lu, F. Zhu, Y. Yang, H. Huang, C. Zou, J. Xiong, Z. Zhong, Application of rice straw, corn cob, and lotus leaf as agricultural waste derived catalysts for low temperature SCR process: optimization of preparation process, catalytic activity and characterization, Aerosol Air Qual. Res., 20 (2020) 862–876.
  84. A.H. Jawad, A.S. Abdulhameed, M.S. Mastuli, Acidfactionalized biomass material for methylene blue dye removal: a comprehensive adsorption and mechanism study, J. Taibah Univ. Sci., 14 (2020) 305–313.
  85. U. Farooq, M.A. Khan, M. Athar, J.A. Kozinski, Effect of modification of environmentally friendly biosorbent wheat (Triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution, Chem. Eng. J., 171 (2011) 400–410.
  86. M.O. Bello, N. Abdus-Salam, F.A. Adekola, U. Pal, Isotherm and kinetic studies of adsorption of methylene blue using activated carbon from ackee apple pods, Chem. Data Collect., 31 (2021) 100607, doi:10.1016/j.cdc.2020.100607.
  87. M.A. Ahmad, M.A. Eusoff, P.O. Oladoye, K.A. Adegoke, O.S. Bello, Optimization and batch studies on adsorption of Methylene blue dye using pomegranate fruit peel based adsorbent, Chem. Data Collect., 32 (2021) 100676, doi: 10.1016/j.cdc.2021.100676.
  88. C. Zou, W. Jiang, J. Liang, X. Sun, Y. Guan, Removal of Pb(II) from aqueous solutions by adsorption on magnetic bentonite, Environ. Sci. Pollut. Res., 26 (2019) 1315–1322.
  89. S. Tahazadeh, T. Mohammadi, M.A. Tofighy, S. Khanlari, H. Karimi, H.B.M. Emrooz, Development of cellulose acetate/metal-organic framework derived porous carbon adsorptive membrane for dye removal applications, J. Membr. Sci., 638 (2021) 119692, doi: 10.1016/j.memsci.2021.119692.
  90. K.L. Yu, X.J. Lee, H.C. Ong, W.-H. Chen, J.-S. Chang, C.-S. Lin, P.L. Show, T.C. Ling, Adsorptive removal of cationic methylene blue and anionic Congo red dyes using wet-torrefied microalgal biochar: equilibrium, kinetic and mechanism modeling, Environ. Pollut., 272 (2021) 115986, doi: 10.1016/j. envpol.2020.115986.
  91. D. Obregón-Valencia, M. del Rosario Sun-Kou, Comparative cadmium adsorption study on activated carbon prepared from aguaje (Mauritia flexuosa) and olive fruit stones (Olea europaea L.), J. Environ. Chem. Eng., 2 (2014) 2280–2288.
  92. K.-Y. Shin, J.-Y. Hong, J. Jang, Heavy metal ion adsorption behavior in nitrogen-doped magnetic carbon nanoparticles: isotherms and kinetic study, J. Hazard. Mater., 190 (2011) 36–44.
  93. Y. Miyah, A. Lahrichi, M. Idrissi, Removal of cationic dye – methylene blue – from aqueous solution by adsorption onto corn cob powder calcined, J. Mater. Environ. Sci., 7 (2016) 96–104.
  94. P.M.K. Reddy, P. Verma, C. Subrahmanyam, Bio-waste derived adsorbent material for methylene blue adsorption, J. Taiwan Inst. Chem. Eng., 58 (2016) 500–508.