References
- L.H.E. Winkel, C. Annette Johnson, M. Lenz, T. Grundl,
O.X. Leupin, M. Amini, L. Charlet, Environmental selenium
research: from microscopic processes to global understanding,
Environ. Sci. Technol., 46 (2012) 571–579.
- Y. Xie, H. Dong, G. Zeng, L. Zhang, Y. Cheng, K. Hou,
Z. Jiang, C. Zhang, J. Deng, The comparison of Se(IV) and
Se(VI) sequestration by nanoscale zero-valent iron in aqueous
solutions: the roles of solution chemistry,
J. Hazard. Mater.,
338 (2017) 306–312.
- S. Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang,
The sorptive and reductive capacities of biochar-supported
nanoscaled zero-valent iron (nZVI) in relation to its crystallite
size, Chemosphere, 186 (2017) 495–500.
- H.E. Feng, D. Zhao, Manipulating the size and dispersibility of
zerovalent iron nanoparticles by use of carboxymethyl cellulose
stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
- T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation
and sedimentation of aqueous nanoscale zerovalent iron
dispersions, Environ. Sci. Technol., 41 (2007) 284–290.
- L.F. Greenlee, J.D. Torrey, R.L. Amaro, J.M. Shaw, Kinetics of
zero valent iron nanoparticle oxidation in oxygenated water,
Environ. Sci. Technol., 46 (2012) 12913–12920.
- H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou,
G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with
modified biochar for Cr(VI) removal from aqueous solution,
J. Hazard. Mater., 332 (2017) 79–86.
- H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water
by supported nano zero-valent iron on activated carbon,
J. Hazard. Mater., 172 (2009) 1591–1596.
- S. Wang, B. Gao, Y. Li, A.E. Creamer, F. He, Adsorptive removal
of arsenate from aqueous solutions by
biochar-supported zerovalent
iron nanocomposite: batch and continuous flow tests,
J. Hazard. Mater., 322 (2017) 172–181.
- H. Wu, W. Wei, C. Xu, Y. Meng, W. Bai, W. Yang, A. Lin,
Polyethylene glycol-stabilized nano zero-valent iron
supported by biochar for highly efficient removal of Cr(VI),
Ecotoxicol. Environ. Saf., 188 (2020) 109902, doi:10.1016/j.
ecoenv.2019.109902.
- S. Li, F. Yang, J. Li, K. Cheng, Porous biochar-nanoscale
zero-valent iron composites: synthesis, characterization and
application for lead ion removal, Sci. Total Environ., 746 (2020)
141037, doi:10.1016/j.scitotenv.2020.141037.
- G. Tan, Y. Mao, H. Wang, M. Junaid, N. Xu, Comparison of
biochar- and activated carbon-supported zerovalent iron for the
removal of Se(IV) and Se(VI): influence of pH, ionic strength,
and natural organic matter, Environ. Sci. Pollut. Res., 26 (2019)
21609–21618.
- X. Ling, J. Li, W. Zhu, Y. Zhu, X. Sun, J. Shen, W. Han, L. Wang,
Synthesis of nanoscale zero-valent iron/ordered mesoporous
carbon for adsorption and synergistic reduction of nitrobenzene,
Chemosphere, 87 (2012) 655–660.
- Z. Saadati, M. Gilani, Kinetics, isotherms, and thermodynamic
modeling of liquid-phase adsorption of Rhodamine B dye
onto Fe/ZnO-shrimp shell nanocomposite, Desal. Water Treat.,
85 (2017) 175–183.
- Y. Zhu, B. Yi, Z. Zong, X. Yang, M. Chen, Q. Yuan, Adsorption
characteristic of organic matter by low-temperature dry cattle
manure-derived anaerobic digestion, Desal. Water Treat.,
225 (2021) 76–85.
- M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang,
Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and
peanut shell-derived biochar properties and TCE adsorption in
water, Bioresour. Technol., 118 (2012) 536–544.
- B. Zhang, J. Zhang, Z. Zhong, W. Wang, M. Zhu, Syngas
production and trace element emissions from microwaveassisted
chemical looping gasification of heavy metal
hyperaccumulators, Sci. Total Environ., 659 (2019) 612–620.
- Z. Wang, K. Liu, L. Xie, H. Zhu, Y. Zhang, Effects of residence
time on characteristics of biochars prepared via co-pyrolysis
of sewage sludge and cotton stalks, J. Anal. Appl. Pyrolysis,
142 (2019) 104659, doi:10.1016/j.jaap.2019.104659.
- Y. Chen, K.Y. Liew, J. Li, Size controlled synthesis of Co
nanoparticles by combination of organic solvent and surfactant,
Appl. Surf. Sci., 255 (2009) 4039–4044.
- H.M. Jang, S. Yoo, Y.-K. Choi, S. Park, E. Kan, Adsorption
isotherm, kinetic modeling and mechanism of tetracycline
on Pinus taeda-derived activated biochar, Bioresour. Technol.,
259 (2018) 24–31.
- A. Kwarciak-Koziowska, R. Wlodarczyk, Efficiency assessment
of coke industry wastewater treatment during advanced
oxidation process with biochar adsorption, Desal. Water Treat.,
199 (2020) 441–450.
- J. Song, S. Zhang, G. Li, Q. Du, F. Yang, Preparation of
montmorillonite modified biochar with various temperatures
and their mechanism for Zn ion removal, J. Hazard. Mater.,
391 (2020) 121692, doi:10.1016/j.jhazmat.2019.121692.
- H. Dong, Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, Y. Li, The roles
of a pillared bentonite on enhancing Se(VI) removal by ZVI and
the influence of co-existing solutes in groundwater, J. Hazard.
Mater., 304 (2016) 306–312.
- B. Subramanyam, Liquid-phase adsorption of phenol onto
blended adsorbents through bioremediation, Desal. Water
Treat., 92 (2017) 181–195.
- C. Lei, B. Yi, W. Deng, M. Chen, Y. Wang, Effect of metal
cationic on the adsorption of selenium from sewage by biochar
loaded with zero-valent iron, Desal. Water Treat., 245 (2022)
202–216.
- X. Xia, L. Ling, W.-X. Zhang, Solution and surface chemistry
of the Se(IV)-Fe(0) reactions: effect of initial solution pH,
Chemosphere, 168 (2017) 1597–1603.
- B. Wang, Y. Li, J. Zheng, Y. Hu, B. Hu, Efficient removal of
U(VI) from aqueous solutions using the magnetic biochar
derived from the biomass of a bloom-forming cyanobacterium
(Microcystis aeruginosa), Chemosphere, 254 (2020) 126898,
doi: 10.1016/j.chemosphere.2020.126898.