References

  1. L.H.E. Winkel, C. Annette Johnson, M. Lenz, T. Grundl, O.X. Leupin, M. Amini, L. Charlet, Environmental selenium research: from microscopic processes to global understanding, Environ. Sci. Technol., 46 (2012) 571–579.
  2. Y. Xie, H. Dong, G. Zeng, L. Zhang, Y. Cheng, K. Hou, Z. Jiang, C. Zhang, J. Deng, The comparison of Se(IV) and Se(VI) sequestration by nanoscale zero-valent iron in aqueous solutions: the roles of solution chemistry,
    J. Hazard. Mater., 338 (2017) 306–312.
  3. S. Wang, Y. Zhou, B. Gao, X. Wang, X. Yin, K. Feng, J. Wang, The sorptive and reductive capacities of biochar-supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size, Chemosphere, 186 (2017) 495–500.
  4. H.E. Feng, D. Zhao, Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers, Environ. Sci. Technol., 41 (2007) 6216–6221.
  5. T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions, Environ. Sci. Technol., 41 (2007) 284–290.
  6. L.F. Greenlee, J.D. Torrey, R.L. Amaro, J.M. Shaw, Kinetics of zero valent iron nanoparticle oxidation in oxygenated water, Environ. Sci. Technol., 46 (2012) 12913–12920.
  7. H. Dong, J. Deng, Y. Xie, C. Zhang, Z. Jiang, Y. Cheng, K. Hou, G. Zeng, Stabilization of nanoscale zero-valent iron (nZVI) with modified biochar for Cr(VI) removal from aqueous solution, J. Hazard. Mater., 332 (2017) 79–86.
  8. H. Zhu, Y. Jia, X. Wu, H. Wang, Removal of arsenic from water by supported nano zero-valent iron on activated carbon, J. Hazard. Mater., 172 (2009) 1591–1596.
  9. S. Wang, B. Gao, Y. Li, A.E. Creamer, F. He, Adsorptive removal of arsenate from aqueous solutions by
    biochar-supported zerovalent iron nanocomposite: batch and continuous flow tests, J. Hazard. Mater., 322 (2017) 172–181.
  10. H. Wu, W. Wei, C. Xu, Y. Meng, W. Bai, W. Yang, A. Lin, Polyethylene glycol-stabilized nano zero-valent iron supported by biochar for highly efficient removal of Cr(VI), Ecotoxicol. Environ. Saf., 188 (2020) 109902, doi:10.1016/j. ecoenv.2019.109902.
  11. S. Li, F. Yang, J. Li, K. Cheng, Porous biochar-nanoscale zero-valent iron composites: synthesis, characterization and application for lead ion removal, Sci. Total Environ., 746 (2020) 141037, doi:10.1016/j.scitotenv.2020.141037.
  12. G. Tan, Y. Mao, H. Wang, M. Junaid, N. Xu, Comparison of biochar- and activated carbon-supported zerovalent iron for the removal of Se(IV) and Se(VI): influence of pH, ionic strength, and natural organic matter, Environ. Sci. Pollut. Res., 26 (2019) 21609–21618.
  13. X. Ling, J. Li, W. Zhu, Y. Zhu, X. Sun, J. Shen, W. Han, L. Wang, Synthesis of nanoscale zero-valent iron/ordered mesoporous carbon for adsorption and synergistic reduction of nitrobenzene, Chemosphere, 87 (2012) 655–660.
  14. Z. Saadati, M. Gilani, Kinetics, isotherms, and thermodynamic modeling of liquid-phase adsorption of Rhodamine B dye onto Fe/ZnO-shrimp shell nanocomposite, Desal. Water Treat., 85 (2017) 175–183.
  15. Y. Zhu, B. Yi, Z. Zong, X. Yang, M. Chen, Q. Yuan, Adsorption characteristic of organic matter by low-temperature dry cattle manure-derived anaerobic digestion, Desal. Water Treat., 225 (2021) 76–85.
  16. M. Ahmad, S.S. Lee, X. Dou, D. Mohan, J.-K. Sung, J.E. Yang, Y.S. Ok, Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water, Bioresour. Technol., 118 (2012) 536–544.
  17. B. Zhang, J. Zhang, Z. Zhong, W. Wang, M. Zhu, Syngas production and trace element emissions from microwaveassisted chemical looping gasification of heavy metal hyperaccumulators, Sci. Total Environ., 659 (2019) 612–620.
  18. Z. Wang, K. Liu, L. Xie, H. Zhu, Y. Zhang, Effects of residence time on characteristics of biochars prepared via co-pyrolysis of sewage sludge and cotton stalks, J. Anal. Appl. Pyrolysis, 142 (2019) 104659, doi:10.1016/j.jaap.2019.104659.
  19. Y. Chen, K.Y. Liew, J. Li, Size controlled synthesis of Co nanoparticles by combination of organic solvent and surfactant, Appl. Surf. Sci., 255 (2009) 4039–4044.
  20. H.M. Jang, S. Yoo, Y.-K. Choi, S. Park, E. Kan, Adsorption isotherm, kinetic modeling and mechanism of tetracycline on Pinus taeda-derived activated biochar, Bioresour. Technol., 259 (2018) 24–31.
  21. A. Kwarciak-Koziowska, R. Wlodarczyk, Efficiency assessment of coke industry wastewater treatment during advanced oxidation process with biochar adsorption, Desal. Water Treat., 199 (2020) 441–450.
  22. J. Song, S. Zhang, G. Li, Q. Du, F. Yang, Preparation of montmorillonite modified biochar with various temperatures and their mechanism for Zn ion removal, J. Hazard. Mater., 391 (2020) 121692, doi:10.1016/j.jhazmat.2019.121692.
  23. H. Dong, Y. Chen, G. Sheng, J. Li, J. Cao, Z. Li, Y. Li, The roles of a pillared bentonite on enhancing Se(VI) removal by ZVI and the influence of co-existing solutes in groundwater, J. Hazard. Mater., 304 (2016) 306–312.
  24. B. Subramanyam, Liquid-phase adsorption of phenol onto blended adsorbents through bioremediation, Desal. Water Treat., 92 (2017) 181–195.
  25. C. Lei, B. Yi, W. Deng, M. Chen, Y. Wang, Effect of metal cationic on the adsorption of selenium from sewage by biochar loaded with zero-valent iron, Desal. Water Treat., 245 (2022) 202–216.
  26. X. Xia, L. Ling, W.-X. Zhang, Solution and surface chemistry of the Se(IV)-Fe(0) reactions: effect of initial solution pH, Chemosphere, 168 (2017) 1597–1603.
  27. B. Wang, Y. Li, J. Zheng, Y. Hu, B. Hu, Efficient removal of U(VI) from aqueous solutions using the magnetic biochar derived from the biomass of a bloom-forming cyanobacterium (Microcystis aeruginosa), Chemosphere, 254 (2020) 126898, doi: 10.1016/j.chemosphere.2020.126898.