References

  1. B.J. Brüschweiler, C. Merlot, Azo dyes in clothing textiles can be cleaved into a series of mutagenic aromatic amines which are not regulated yet, Regul. Toxicol. Pharm., 88 (2017) 214–226.
  2. Q. Zhou, Chemical pollution and transport of organic dyes in water-soil-crop systems of the Chinese coast, Bull. Environ. Contam. Toxicol., 66 (2001) 784–793.
  3. Y. Hou, S. Yan, G. Huang, Q. Yang, S. Huang, J. Cai, Fabrication of N-doped carbons from waste bamboo shoot shell with high removal efficiency of organic dyes from water, Bioresour. Technol., 303 (2020) 122939, doi:10.1016/j.biortech.2020.122939.
  4. Y. Zhou, J. Lu, Y. Zhou, Y. Liu, Recent advances for dyes removal using novel adsorbents: a review, Environ. Pollut., 252 (2019) 352–365.
  5. A. Darwish, M. Rashad, H.A. AL-Aoh, Methyl orange adsorption comparison on nanoparticles: isotherm, kinetics, and thermodynamic studies, Dyes Pigm., 160 (2019) 563–571.
  6. A.B. Fradj, A. Boubakri, A. Hafiane, S.B. Hamouda, Removal of azoic dyes from aqueous solutions by chitosan enhanced ultrafiltration, Results Chem., 2 (2020), doi: 10.1016/j. rechem.2019.100017.
  7. F.R. Omi, M.R. Choudhury, N. Anwar, A.R. Bakr, M.S. Rahaman, Highly conductive ultrafiltration membrane via vacuum filtration assisted layer-by-layer deposition of functionalized carbon nanotubes, Ind. Eng. Chem. Res., 56 (2017) 8474–8484.
  8. N.C.L. Beluci, G.A.P. Mateus, C.S. Miyashiro, N.C. Homem, R.G. Gomes, M.R. Fagundes-Klen, A.M.S. Vieira, Hybrid treatment of coagulation/flocculation process followed by ultrafiltration in TiO2-modified membranes to improve the removal of Reactive black 5 dye, Sci. Total Environ., 664 (2019) 222–229.
  9. M. Naushad, G. Sharma, Z.A. Alothman, Photodegradation of toxic dye using Gum Arabic-crosslinkedpoly (acrylamide)/Ni(OH)2/FeOOH nanocomposites hydrogel, J. Cleaner Prod., 241 (2019) 118263, doi:10.1016/j.jclepro.2019.118263.
  10. V.P. Indrakanti, J.D. Kubicki, H.H. Schobert, Photoinduced activation of CO2 on Ti-based heterogeneous catalysts: current state, chemical physics-based insights and outlook, Energy Environ. Sci., 2 (2009) 745–758.
  11. H. Ma, B. Wang, X. Luo, Studies on degradation of methyl orange wastewater by combined electrochemical process, J. Hazard. Mater., 149 (2007) 492–498.
  12. I. Ihsanullah, A. Jamal, M. Ilyas, M. Zubair, G. Khan, M.A. Atieh. Bioremediation of dyes: current status and prospects, J. Water Process Eng., 38 (2020) 101680, doi: 10.1016/j.jwpe.2020.101680.
  13. J.O. Ighalo, O.J. Ajala, A.G. Adeniyi, E.O. Babatunde, M.A. Ajala, Ecotoxicology of glyphosate and recent advances in its mitigation by adsorption, Environ. Sci. Pollut. Res., 28 (2021) 2655–2668.
  14. D.A. Giannakoudakis, N. Farahmand, D. Omot, K. Sobczak, T.J. Bandosz, J.C. Colmenares, Ultrasound-activated TiO2/ GO-based bifunctional photoreactive adsorbents for detoxification of chemical warfare agent surrogate vapors, Chem. Eng. J., 395 (2020) 125099, doi: 10.1016/j.cej.2020.125099.
  15. Z. Huang, P. Dong, Y. Zhang, X. Nie, X. Wang, X. Zhang, A ZIF-8 decorated TiO2 grid-like film with high CO2 adsorption for CO2 photoreduction, J. CO2 Util., 24 (2018) 369–375.
  16. S. Zhang, J. Wang, Y. Zhang, J. Ma, L. Huang, S. Yu, L. Chen, G. Song, M. Qiu, X. Wang, Applications of
    water-stable metalorganic frameworks in the removal of water pollutants: a review, Environ. Pollut., 291 (2021) 118076, doi: 10.1016/j. envpol.2021.118076.
  17. Y. Liu, D. Lin, W. Yang, X. An, A. Sun, X. Fan, Q. Pan, In situ modification of ZIF-67 with multi-sulfonated dyes for great enhanced methylene blue adsorption via synergistic effect, Microporous Mesoporous Mater., 303 (2020) 110304, doi: 10.1016/j.micromeso.2020.110304.
  18. L.L. Tan, W.J. Ong, S.P. Chai, B.T. Goh, A.R. Mohamed, Visiblelight- active oxygen-rich TiO2 decorated 2D graphene oxide with enhanced photocatalytic activity toward carbon dioxide reduction, Appl. Catal., B, 179 (2015) 160–170.
  19. J. Zhang, Y. Cai, K. Liu, Extremely effective boron removal from water by stable metal organic framework ZIF-67, Ind. Eng. Chem. Res., 58 (2019) 4199–4207.
  20. W. Guan, X. Gao, G. Ji, Y. Xing, C. Du, Z. Liu, Fabrication of a magnetic nanocomposite photocatalysts
    Fe3O4@ZIF-67 for degradation of dyes in water under visible light irradiation, J. Solid State Chem., 255 (2017) 150–156.
  21. T. Li, M. Lu, Y. Gao, X. Huang, G. Liu, D. Xu, Double layer MOFs M-ZIF-8@ZIF-67: the adsorption capacity and removal mechanism of fipronil and its metabolites from environmental water and cucumber samples, J. Adv. Res., 24 (2020) 159–166.
  22. R. Li, W. Li, C. Jin, Q. He, Y. Wang, Fabrication of ZIF-8@TiO2 micron composite via hydrothermal method with enhanced absorption and photocatalytic activities in tetracycline degradation, J. Alloys Compd., 825 (2020) 154008, doi: 10.1016/j. jallcom.2020.154008.
  23. M. Zhang, Q. Shang, Y. Wan, Q. Cheng, G. Liao, Z. Pan, Selftemplate synthesis of double-shell TiO2@ZIF-8 hollow nanospheres via sonocrystallization with enhanced photocatalytic activities in hydrogen generation, Appl. Catal., B, 241 (2018) 149–158.
  24. K.Y.A. Lin, H.A. Chang, Zeolitic imidazole framework-67 (ZIF-67) as a heterogeneous catalyst to activate peroxymonosulfate for degradation of Rhodamine B in water, J. Taiwan Inst. Chem. Eng., 53 (2015) 40–45.
  25. H.R. Pouretedal, N. Sadegh, Effective removal of Amoxicillin, Cephalexin, Tetracycline and Penicillin G from aqueous solutions using activated carbon nanoparticles prepared from vine wood, J. Water Process Eng.,
    1 (2014) 64–73.
  26. H.N. Tran, S.J. You, H.P. Chao, Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: a comparison study, J. Environ. Chem. Eng., 4 (2016) 2671–2682.
  27. A.W. Tan, A.L. Ahmad, B.H. Hameed, Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies, J. Hazard. Mater., 154 (2008) 337–346.
  28. H.N. Tran, S.J. You, A. Hosseini-Bandegharaei, H. Chao, Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: a critical review, Water Res., 120 (2017) 88–116.
  29. K.V. Kumar, Comments on “Adsorption of acid dye onto organobentonite”, J. Hazard. Mater., 137 (2006) 638–639.
  30. Q. Yang, R. Lu, S. Ren, C. Chen, Z. Chen, X. Yang, Three dimensional reduced graphene oxide/ZIF-67 aerogel: Effective removal cationic and anionic dyes from water, Chem. Eng. J., 348 (2018) 202–211.
  31. W. Hassan, U. Farooq, M. Ahmad, M. Athar, M.A. Khan, Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye, Arabian J. Chem., 10 (2017) 1512–1522.
  32. Z. Zhang, J. Zhang, J. Liu, Z. Xiong, X. Chen, Selective and competitive adsorption of azo dyes on the metal–organic framework ZIF-67, Water Air Soil Pollut., 227 (2016) 471–482.
  33. Y. Liu, D. Lin, W. Yang, X. An, A. Sun, X. Fan, Q. Pan, In-situ modification of ZIF-67 with multi-sulfonated dyes for great enhanced methylene blue adsorption via synergistic effect, Microporous Mesoporous Mater., 303 (2020) 110304, doi: 10.1016/j.micromeso.2020.110304.
  34. Z. Mahdi, Q.J. Yu, A.E. Hanandeh, Investigation of the kinetics and mechanisms of nickel and copper ions adsorption from aqueous solutions by date seed derived biochar, J. Environ. Chem. Eng., 6 (2018) 1171–1181.