References
- https://www.waterworld.com/international/wastewater/article/16201682/analysis-global-water-stress-by-2040, Accessed
on 20th June 2021.
- R. Al Hashemi, S. Zarreen, A. Al Raisi, F.A. Al Marzooqi,
S.W. Hasan, A review of desalination trends in Gulf Cooperation
Council Countries, Int. J. Sci. Res., 2 (2014) 72–96.
- https://www.iea.org/commentaries/desalinated-water-affectsthe-energy-equation-in-the-middle-east, Accessed on 20th June
2021.
- M.A. Darwish, H.K. Abdulrahim, A.S. Hassan, A.A. Mabrouk,
PV and CSP solar technologies and desalination: an economic
analysis, Desal. Water Treat., 57 (2016) 16679–16702.
- M. Sadi, H. Fakharian, H. Ganji, M. Kakavand, Evolving
artificial intelligence techniques to model the hydrate-based
desalination process of produced water, J. Water Reuse Desal.,
9 (2019) 372–384.
- S. AlZu’bi, M. Alsmirat, M. Al-Ayyoub, Y. Jararweh, Artificial
Intelligence Enabling Water Desalination Sustainability
Optimization, 2019 7th International Renewable and Sustainable
Energy Conference (IRSEC), IEEE, Agadir, Morocco, 2019,
pp. 1–4.
- N. Parveen, S. Zaidi, M. Danish, Artificial intelligence (AI)-based reverse osmosis water desalination models, IWRA (India)
J., 8 (2019) 44–50.
- Y. Wang, Z. Cao, A. Barati Farimani, Ozark nanopore: highly
efficient and selective graphene nanopore designed by artificial
intelligence for water desalination, Bull. Am. Phys. Soc., (2020),
2020APS.DFDJ16004W.
- S. Vrkalovic, E.-C. Lunca, I.-D. Borlea, Model-free sliding mode
and fuzzy controllers for reverse osmosis desalination plants,
Int. J. Artif. Intell., 16 (2018) 208–222.
- M. Ehteram, S.Q. Salih, Z.M. Yaseen, Efficiency evaluation of
reverse osmosis desalination plant using hybridized multilayer
perceptron with particle swarm optimization, Environ. Sci.
Pollut. Res., 27 (2020) 15278–15291.
- H.M. El-Arwash, A.M. Azmy, E.M. Rashad, A GA-Based
Initialization of PSO for Optimal APFS Allocation in Water
Desalination Plant, 2017 Nineteenth International Middle East
Power Systems Conference (MEPCON), IEEE, Cairo, Egypt,
2017, pp. 1378–1384.
- N.S. Rathore, V.P. Singh, Whale optimization algorithm-based
controller design for reverse osmosis desalination plants, Int. J.
Intell. Eng., 7 (2019) 77–88.
- R. Rustum, A.M.J. Kurichiyanil, S. Forrest, C. Sommariva,
A.J. Adeloye, M. Zounemat-Kermani, M. Scholz, Sustainability
ranking of desalination plants using mamdani fuzzy logic
inference systems, Sustainability, 12 (2020) 631, doi: 10.3390/
su12020631.
- P. Kofinas, A.I. Dounis, Online tuning of a PID controller with
a fuzzy reinforcement learning MAS for flow rate control of
a desalination unit, Electronics, 8 (2019) 231, doi: 10.3390/electronics8020231.
- M.T. Gaudio, G. Coppola, L. Zangari, S. Curcio, S. Greco,
S. Chakraborty, Artificial intelligence-based optimization of
industrial membrane processes, Earth Syst. Environ., 5 (2021)
385–398.
- Y. Choi, Y. Lee, K. Shin, Y. Park, S. Lee, Analysis of long-term
performance of full-scale reverse osmosis desalination plant
using artificial neural network and tree model, Environ. Eng.
Res., 25 (2020) 763–770.
- A.V. Dudchenko, M.S. Mauter, Neural networks for estimating
physical parameters in membrane distillation, J. Membr. Sci.,
610 (2020) 118285, doi: 10.1016/j.memsci.2020.118285.
- P. Gao, L. Zhang, K. Cheng, H. Zhang, A new approach to
performance analysis of a seawater desalination system by an
artificial neural network, Desalination, 205 (2007) 147–155.
- M. Faegh, P. Behnam, M.B. Shafii, M. Khiadani, Development of
artificial neural networks for performance prediction of a heat
pump assisted humidification-dehumidification desalination
system, Desalination, 508 (2021) 115052.
- K.A. Al-Shayji, S. Al-Wadyei, A. Elkamel, Modelling and
optimization of a multistage flash desalination process,
Eng. Optim., 37 (2005) 591–607.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network
based correlation for estimating water permeability constant in
RO desalination process under fouling, Desalination, 345 (2014)
101–111.
- M. Derbali, S.M. Buhari, G. Tsaramirsis, M. Stojmenovic, H. Jerbi,
M.N. Abdelkrim, M.H. Al-Beirutty, Water desalination fault
detection using machine learning approaches: a comparative
study, IEEE Access, 5 (2017) 23266–23275.
- M.E. El-Hawary, Artificial neural networks and possible
applications to desalination, Desalination, 92 (1993) 125–147.
- G.P. Rao, D.M.K. Al-Gobaisi, A. Hassan, A. Kurdali, R. Borsani,
M. Aziz, Towards improved automation for desalination processes,
Part II: intelligent control, Desalination, 8 (1994) 507–528.
- K.A. Al-Shayji, Y.A. Liu, Predictive modeling of large-scale
commercial water desalination plants: data-based neural
network and model-based process simulation, Ind. Eng. Chem.
Res., 41 (2002) 6460–6474.
- R. Selvaraj, P.B. Deshpande, S.S. Tambe, B.D. Kulkami, Neural
networks for the identification of MSF desalination plants,
Desalination, 101 (1995) 185–193.
- A. Aminian, Prediction of temperature elevation for seawater in
multi-stage flash desalination plants using radial basis function
neural networks, Chem. Eng. J., 162 (2010) 552–556.
- H.R. Godini, M. Ghadrdan, M.R. Omidkhah, S.S. Madaeni, Part
II: prediction of the dialysis process performance using artificial
neural network (ANN), Desalination, 265 (2011) 11–21.
- W. Cao, Q. Liu, Y. Wang, I.M. Mujtaba, Modeling and simulation
of VMD desalination process by ANN, Comput. Chem. Eng.,
84 (2016) 96–103.
- M.M. Jafar, A. Zilouchian, Prediction of critical desalination
parameters using radial basis functions networks, J. Intell. Rob.
Syst., 34 (2002) 219–230.
- Z.V.P. Murthy, M.M. Vora, Prediction of reverse osmosis
performance using artificial neural network, Indian J. Chem.
Technol., 11 (2004) 108–115.
- A. Abbas, N. Al-Bastaki, Modeling of an RO water desalination
unit using neural networks, Chem. Eng. J., 114 (2005) 139–143.
- Y.G. Lee, Y.S. Lee, J.J. Jeon, S. Lee, D.R. Yang, I.S. Kim, J.H. Kim,
Artificial neural network model for optimizing operation of
a seawater reverse osmosis desalination plant, Desalination,
247 (2009) 180–189.
- D. Libotean, J. Giralt, F. Giralt, R. Rallo, T. Wolfe, Y. Cohen,
Neural network approach for modeling the performance of
reverse osmosis membrane desalting, J. Membr. Sci., 326 (2009)
408–419.
- S.S. Madaeni, M. Shiri, A.R. Kurdian, Modeling, optimization,
and control of reverse osmosis water treatment in Kazeroon
power plant using neural network, Chem. Eng. Commun.,
202 (2015) 6–14.
- A.M. Aish, H.A. Zaqoot, S.M. Abdeljawad, Artificial neural
network approach for predicting reverse osmosis desalination
plants performance in the Gaza Strip, Desalination, 367 (2015)
240–247.
- M. Barello, D. Manca, R. Patel, I.M. Mujtaba, Neural network
based correlation for estimating water permeability constant in
RO desalination process under fouling, Desalination, 345 (2014)
101–111.
- E.A. Roehl, D.A. Ladner, R.C. Daamen, J.B. Cook, J. Safarik,
D.W. Phipps, P. Xie, Modeling fouling in a large RO system with
artificial neural networks, J. Membr. Sci., 552 (2018) 95–106.