References
- A. Vaz, P. Bedrikovetsky, P.D. Fernandes, A. Badalyan,
T. Carageorgos, Determining model parameters for non-linear
deep-bed filtration using laboratory pressure measurements,
J. Pet. Sci. Eng., 151 (2017) 421–433.
- S. Deng, R. Bai, J. Paul Chen, Z. Jiang, G. Yu, F. Zhou, Z. Chen,
Produced water from polymer flooding process in crude oil
extraction: characterization and treatment by a novel crossflow
oil–water separator, Sep. Purif. Technol., 29 (2002) 207–216.
- R.B. Needham, P.H. Doe, Polymer flooding review, J. Pet.
Technol., 39 (1987) 1503–1507.
- Y. Liu, H. Lu, Y. Li, H. Xu, Z. Pan, P. Dai, H. Wang, Q. Yang,
A review of treatment technologies for produced water in
offshore oil and gas fields, Sci. Total Environ., 775 (2021) 145485,
doi:10.1016/j.scitotenv.2021.145485.
- K.J. Ives, Rational design of filters, Proc. Inst. Civ. Eng., 16 (1960)
189–193.
- D.M. Mintz, Modern Theory of Filtration, Int. Water Sup.
Congress & Exhibition, Barcelona, 1966.
- V. Gitis, I. Rubinstein, M. Livshits, G. Ziskind, Deep-bed
filtration model with multistage deposition kinetics, Chem.
Eng. J., 163 (2010) 78–85.
- J.E. Altoé F., P. Bedrikovetsky, A.G. Siqueira, A.L.S. de Souza,
F.S. Shecaira, Correction of basic equations for deep bed
filtration with dispersion, J. Pet. Sci. Eng., 51 (2006) 68–84.
- A. Zamani, B. Maini, Flow of dispersed particles through porous
media — deep bed filtration, J. Pet. Sci. Eng., 69 (2009) 71–88.
- C.R. O’Melia, M. ASCE, Closure to “particles, pretreatment, and
performance in water filtration”, J. Environ. Eng., 113 (1987)
5, doi: 10.1061/(ASCE)0733-9372(1987)113:5(1176).
- J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics,
Part of the Mechanics of Fluids and Transport Processes Book
Series (MFTP, Volume 1), Martinus Nijhoff Publishers, Boston,
1991, p. 273.
- L.N. Reddi, M.V.S. Bonala, Analytical solution for fine particle
accumulation in soil filters, J. Geotech. Geoenviron. Eng.,
123 (1997) 1143–1152.
- M. Elimelech, J. Gregory, X. Jia, Particle Deposition and
Aggregation: Measurement, Modelling and Simulation,
Butterworth-Heinemann, Bodrnin, 1995, pp. 263–289.
- D.D. Putnam, M.A. Burns, Predicting the filtration of
noncoagulating particles in depth filters, Chem. Eng. Sci.,
52 (1997) 93–105.
- V.N. Burganos, E.D. Skouras, C.A. Paraskeva, A.C. Payatakes,
Simulation of the dynamics of depth filtration of non-Brownian
particles, AlChE J., 47 (2001) 880–894.
- Yu.P. Galaguz, L.I. Kuz’mina, Yu.L. Osipov, Problem of deep
bed filtration in a porous medium with the initial deposit, Fluid
Dyn., 54 (2019) 85–97.
- A. Moskal, Ł. Makowski, R. Przekop, Effect of filter
inhomogeneity on deep-bed filtration process – a CFD
investigation, Iran. J. Chem. Chem. Eng., 39 (2020) 155–161.
- Y.P. Galaguz, G.L. Safina, Modeling of particle filtration in a
porous medium with changing flow direction, Procedia Eng.,
153 (2016) 157–161.
- S.K. Ngueleu, P. Grathwohl, O.A. Cirpka, Effect of natural
particles on the transport of lindane in saturated porous media:
laboratory experiments and model-based analysis, J. Contam.
Hydrol., 149 (2013) 13–26.
- K.-M. Yao, M.T. Habibian, C.R. O’Melia, Water and waste water
filtration. Concepts and applications, Environ. Sci. Technol.,
5 (1971) 1105–1112.
- J.C. Crittenden, R. Rhodes Trussell, D.W. Hand, K.J. Howe,
G. Tchobanoglous, MWH’s Water Treatment: Principles and
Design, Third Edition: Principles and Design, John Wiley &
Sons, Inc., New York, 2012.
- K.-M. Yao, Influence of Suspended Particle Size on the Transport
Aspect of Water Filtration, The University of North Carolina
at Chapel Hill ProQuest Dissertations Publishing, University
Microfilms, Inc., Michigan, 1968.
- C. Tien, A.C. Payatakes, Advances in deep bed filtration, AlChE
J., 25 (1979) 737–759.
- D.M. Mints, Kinetics of the filtration of aqueous suspensions
of low concentration in water purification filters, Doklady
Akademii nauk SSSR, 78 (1951) 315–318.
- M.C. Moran, D.C. Moran, R.S. Cushing, D.F. Lawler, Particle
behavior in deep-bed filtration: Part 2—particle detachment,
J. AWWA, 85 (1993) 82–93.
- N.-D. Ahfir, A. Hammadi, A. Alem, H.Q. Wang, G. Le
Bras, T. Ouahbi, Porous media grain size distribution and
hydrodynamic forces effects on transport and deposition of
suspended particles, J. Environ. Sci., 53 (2017) 161–172.
- A. Adin, M. Rebhun, Deep-bed filtration: accumulationdetachment
model parameters, Chem. Eng. Sci., 42 (1987)
1213–1219.
- J. Bergendahl, D. Grasso, Prediction of colloid detachment in
a model porous media: hydrodynamics, AlChE J., 55 (1999)
1523–1532.
- S.A. Bradford, S. Torkzaban, S.L. Walker, Coupling of physical
and chemical mechanisms of colloid straining in saturated
porous media, Water Res., 41 (2007) 3012–3024.
- S. Torkzaban, S.A. Bradford, S.L. Walker, Resolving the
coupled effects of hydrodynamics and DLVO forces on colloid
attachment in porous media, Langmuir, 23 (2007) 9652–9660.
- X. Han, H. Ma, C. Wilson, J.K. Critser, Effects of nanoparticles
on the nucleation and devitrification temperatures of polyol
cryoprotectant solutions, Microfluid. Nanofluid., 4 (2008)
357–361.
- Y. Li, C. Dai, Y. Wu, K. Xu, M. Zhao, Y. Wang, Viscoelastic
surfactant fluids filtration in porous media: a pore-scale study,
AlChE J., 66 (2020) e16229, doi: 10.1002/aic.16229.
- C. Li, J. Li, N. Wang, Q. Zhao, P. Wang, Status of the treatment
of produced water containing polymer in oilfields: a review,
J. Environ. Chem. Eng., 9 (2021) 105303, doi: 10.1016/j.
jece.2021.105303.
- A.Y. Kirschner, Y.-H. Cheng, D.R. Paul, R.W. Field, B.D. Freeman,
Fouling mechanisms in constant flux crossflow ultrafiltration,
J. Membr. Sci., 574 (2019) 65–75.
- T.K. Sen, Processes in pathogenic biocolloidal contaminants
transport in saturated and unsaturated porous media: a review,
Water Air Soil Pollut., 216 (2011) 239–256.
- S.P. Xu, B. Gao, J.E. Saiers, Straining of colloidal particles in
saturated porous media, Water Resour. Res., 42 (2006) W12S16,
doi: 10.1029/2006WR004948.
- M.R. Wiesner, V. Tarabara, M. Fidalgo de Cortalezzi, Processes
of particle deposition in membrane operation and fabrication,
Water Sci. Technol., 51 (2005) 345–348.
- M.R. Wiesner, Morphology of particle deposits, J. Environ.
Eng., 125 (1999) 1124–1132.
- Y. Tao, Z.F. Ma, Q.Y. Yang, Formation and performance of
Kaolin/MnO2 bi-layer composite dynamic membrane for
oily wastewater treatment: effect of solution conditions,
Desalination, 270 (2011) 50–56.
- L. Li, G. Xu, H. Yu, Dynamic membrane filtration: formation,
filtration, cleaning, and applications, Chem. Eng. Technol.,
41 (2018) 7–18.
- J. Zhang, X. Han, B. Jiang, X. Qiu, B. Gao, A hybrid system
combining self-forming dynamic membrane bioreactor with
coagulation process for advanced treatment of bleaching effluent
from straw pulping process, Desal. Water Treat., 18 (2010) 212–216.
- B. Ding, C. Li, Y. Wang, J. Xu, Effects of pore size distribution
and coordination number on filtration coefficients for strainingdominant
deep bed filtration from percolation theory with 3D
networks, Chem. Eng. Sci., 175 (2017) 1–11.
- R. Field, S. Hang, T. Arnot, The influence of surfactant on
water flux through microfiltration membranes, J. Membr. Sci.,
86 (1994) 291–304.
- Y. Jing, T. Jin, J. Fan, Capillaries model for turbidity removal in
filtration process with uniform media, China Water Wastewater,
16 (2000) 1–4.
- R. Bai, C. Tien, Particle deposition under unfavorable surface
interactions, J. Colloid Interface Sci., 218 (1999) 488–499.
- R. Rajagopalan, T. Chi, Trajectory analysis of deep‐bed
filtration with the sphere‐in‐cell porous media model, AlChE J.,
22 (1976) 523–533.
- N. Tufenkji, M. Elimelech, Deviation from the classical colloid
filtration theory in the presence of repulsive DLVO interactions,
Langmuir, 20 (2005) 10818–10828.
- M.N. Saprykina, N.V. Yaroshevskaya, L.A. Savchina,
V.V. Goncharuk, Adhesion analysis of micromycetes on
granular media, J. Water Chem. Technol., 32 (2010) 284–289.
- S. Bhattacharjee, J.Y. Chen, M. Elimelech, DLVO interaction
energy between spheroidal particles and a flat surface, Colloids
Surf., A, 165 (2000) 143–156.
- E.J.W. Verwey, Theory of the stability of lyophobic colloids,
J. Phys. Chem., 10 (1955) 224–225.
- M. Elimelech, Predicting collision efficiencies of colloidal
particles in porous media, Water Res., 26 (1992) 1–8.
- P. Raveendran, A. Amirtharajah, Role of short-range forces in
particle detachment during filter backwashing,
J. Environ. Eng.,
121 (1995) 860–868.
- E.A. Stephan, G.G. Chase, A preliminary examination of zeta
potential and deep bed filtration activity, Sep. Purif. Technol.,
21 (2001) 219–226.
- J. Kim, J.A. Nason, D.F. Lawler, Influence of surface charge
distributions and particle size distributions on particle
attachment in granular media filtration, Environ. Sci. Technol.,
42 (2008) 2557–2562.
- B.W. Yang, Q. Chang, Wettability studies of filter media using
capillary rise test, Sep. Purif. Technol., 60 (2008) 335–340.
- X. Li, W.P. Johnson, Nonmonotonic variations in deposition
rate coefficients of microspheres in porous media under
unfavorable deposition conditions, Environ. Sci. Technol.,
39 (2005) 1658–1665.
- Y.-I. Chang, W.-Y. Cheng, H.-C. Chan, A proposed correlation
equation for predicting filter coefficient under unfavorable
deposition conditions, Sep. Purif. Technol., 65 (2009) 248–250.
- J. Liu, X. Zhu, H. Zhang, F. Wu, B. Wei, Q. Chang,
Superhydrophobic coating on quartz sand filter media for oily
wastewater filtration, Colloids Surf., A, 553 (2018) 509–514.
- W. Bigui, Y. Cheng, L. Jianlin, W. Gang, D. Liang, S. Xiaosan,
W. Fuping, L. Hua, C. Qing, Fabrication of superhydrophilic
and underwater superoleophobic quartz sand filter for oil/
water separation, Sep. Purif. Technol., 229 (2019) 115808, doi:
10.1016/j.seppur.2019.115808.
- P.S. Kulkarni, S.U. Patel, G.G. Chase, Mixed hydrophilic/hydrophobic fiber media for water-in-oil coalescence, Sep.
Purif. Technol., 85 (2011), doi: 10.1016/j.seppur.2011.10.004.
- J. Wang, Y. Wu, Y. Cao, G. Li, Y. Liao, Influence of surface
roughness on contact angle hysteresis and spreading work,
Colloid Polym. Sci., 298 (2020) 1107–1112
- J. Zhao, T. Shan, Coupled CFD–DEM simulation of fluid–particle interaction in geomechanics, Powder Technol.,
239 (2013) 248–258.