References
- N.C. Darre, G.S. Toor, Desalination of water: a review, Curr.
Pollut. Rep., 4 (2018) 104–111.
- Y.H. Teow, A.W. Mohammad, New generation nanomaterials
for water desalination: a review, Desalination, 451 (2019) 2–17.
- M.O. Mavukkandy, C.M. Chabib, I. Mustafa, A. Al Ghaferi,
F. Al Marzooqi, Brine management in desalination industry:
from waste to resources generation, Desalination, 472 (2019)
114187, doi:10.1016/j.desal.2019.114187.
- A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination
brine disposal methods and treatment technologies – a
review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j.
scitotenv.2019.07.351.
- International Desalination Association, 2019. Available at:
https://idadesal.org/ (Accessed 4.24.19).
- H. Frank, E. Rahav, E. Bar-Zeev, Short-term effects of SWRO
desalination brine on benthic heterotrophic microbial
communities, Desalination, 417 (2017) 52–59.
- T. Mezher, H. Fath, Z. Abbas, A. Khaled, Techno-economic
assessment and environmental impacts of desalination
technologies, Desalination, 266 (2011) 263–273.
- E. Jones, M. Qadir, M.T.H. van Vliet, V. Smakhtin, S.-m. Kang,
The state of desalination and brine production:
a global outlook,
Sci. Total Environ., 657 (2019) 1343–1356.
- S. van Wyk, A.G.J. van der Ham, S.R.A. Kersten, Analysis of
the energy consumption of supercritical water desalination
(SCWD), Desalination, 474 (2020) 114189, doi: 10.1016/j.
desal.2019.114189.
- I. Ihsanullah, M.A. Atieh, M. Sajid, M.K. Nazal, Desalination
and environment: a critical analysis of impacts, mitigation
strategies, and greener desalination technologies, Sci. Total
Environ., 80 (2021) 146585, doi:10.1016/j.scitotenv.2021.146585.
- S. Miller, H. Shemer, R. Semiat, Energy and environmental
issues in desalination, Desalination, 366 (2015) 2–8.
- D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination
plant discharges on the marine environment:
a critical review
of published studies, Water Res., 44 (2010) 5117–5128.
- J. Jaime Sadhwani, J.M. Veza, C. Santana, Case studies on
environmental impact of seawater desalination, Desalination,
185 (2005) 1–8.
- S H. hemer, R. Semiat, Sustainable RO desalination – energy
demand and environmental impact, Desalination, 424 (2017)
10–16.
- G.A. Tularam, M. Ilahee, Environmental concerns of
desalinating seawater using reverse osmosis, J. Environ. Monit.,
9 (2007) 805–813.
- A.M.O. Mohamed, M. Maraqa, J. Al Handhaly, Impact of land
disposal of reject brine from desalination plants on soil and
groundwater, Desalination, 182 (2005) 411–433.
- M.K.K. Nassar, R.M. El-Damak, A.H.M. Ghanem, Impact of
desalination plants brine injection wells on coastal aquifers,
Environ. Geol., 54 (2008) 445–454.
- D.A. Roberts, E.L. Johnston, N.A. Knott, Impacts of desalination
plant discharges on the marine environment:
a critical
review of published studies, Water Res., 44 (2010) 5117–5128.
- N. Raventos, E. Macpherson, A. García-Rubiés, Effect of
brine discharge from a desalination plant on macrobenthic
communities in the NW Mediterranean, Mar. Environ. Res.,
62 (2006) 1–14.
- M.P. Shahabi, A. McHugh, G. Ho, Environmental and
economic assessment of beach well intake versus open intake
for seawater reverse osmosis desalination, Desalination, 357
(2015) 259–266.
- H. Frank, K.E. Fussmann, E. Rahav, E. Bar Zeev, Chronic effects
of brine discharge from large-scale seawater reverse osmosis
desalination facilities on benthic bacteria, Water Res., 151 (2019)
478–487.
- K.L. Petersen, A. Paytan, E. Rahav, O. Levy, J. Silverman,
O. Barzel, D. Potts, E. Bar-Zeev, Impact of brine and antiscalants
on reef-building corals in the Gulf of Aqaba – potential effects
from desalination plants. Water Res., 144 (2018) 183–191.
- M. Cappelle, W.S. Walker, T.A. Davis, Improving desalination
recovery using zero discharge desalination (ZDD): a process
model for evaluating technical feasibility, Ind. Eng. Chem. Res.,
56 (2017) 10448–10460.
- A. Panagopoulos, K.-J. Haralambous, M. Loizidou, Desalination
brine disposal methods and treatment technologies –
a review, Sci. Total Environ., 693 (2019) 133545, doi: 10.1016/j.
scitotenv.2019.07.351.
- R.A. Hussien, Application of density-dependant finite element
model for studying seawater intrusion
in Ras El-Hekma,
Northwestern Coast, Egypt, Int. J. Water Resour. Environ. Eng.,
9 (2017) 226–242.
- K.H. Hagagg, Numerical modeling of seawater intrusion in
karstic aquifer, Northwestern Coast of Egypt, Model. Earth
Syst. Environ., 5 (2019) 31–44.
- A. Lamei, P. van der Zaag, E. von Münch, Water resources
management to satisfy high water demand in the arid Sharm
El-Sheikh on the Red Sea, Egypt, Desal. Water Treat., 1 (2009)
299–306.
- UNESCO, World Water Assessment Program: Facts and
Figures, 2008. Available at: http://www.unesco.org/water/wwap/facts_figures/
- A.M. Elkomy, A.H. Hassan, M. Mokhtar, K. Ghodeif, Beach
filtration for low cost RO desalination and environment
protection – a case study of Sharm El-Sheikh, South Sinai,
Egypt, J. Al-Azhar Univ. Eng. Sector, 14 (2019) 1436–1447.
- A. Hafez, S. El-Manharawy, Economics of seawater RO
desalination in the Red Sea region, Egypt. Part 1. A case study,
Desalination, 153 (2002) 335–347.
- MSEA, Law 4 for the Protection of the Environment, 2006.
Available at: http://www.eeaa.gov.eg/English/main/about.asp
- UNEP/PERSGA, Assessment of Land-Based Sources and
Activities Affecting the Marine Environment in the Red Sea
and Gulf of Aden, UNEP Regional Seas Report and Studies No
166, United Nations Environmental program, 1997. Available
at: http://www.unep.ch/regional seas/main/persga/redthreat.
html
- M. Abou Rayan, B. Djebedjian, I. Khaled, Water supply and
demand and a desalination option for Sinai Egypt, Desalination,
136 (2001) 73–81.
- A.A. Abd Allah, Geological and Geophysical Studies for
Groundwater Investigation in Sharm El-Sheikh-
Ras Mohamed
Area South Sinai, Egypt, Ph.D. Al-Azhar University, Cairo,
Egypt, 1999, pp. 118.
- M.H. El-Sayed, Comparative study of water quality of the
Quaternary Aquifer in Wadi–Watir basin and its delta, Southeast
Sinai, Egypt, Egypt. J. Desert Res., 56 (2006) 17–46.
- J.C. Desconnets, J.D. Taupin, T. Lebel, C. Leduc, Hydrology of
the HAPEX-Sahel Central Super-Site: surface water drainage
and aquifer recharge through the pool systems, J. Hydrol.,
188–189 (1997) 155–178.
- J. Cools, P. Vanderkimpen, E. Afandi, A. Abdel-khalek,
S. Fockedey, M. El-Sammany, G. Abdallah, M. El-Bihery,
W. Bauwens, M. Huygens, An early warning system for flash
floods in hyper-arid Egypt. Nat. Hazards Earth Syst. Sci.,
12 (2012) 443–457.
- I.H. Himida, Water Resources of Wadi Watir, Internal Report,
Desert Research Center, 1997 (in Arabic).
- A.A. El-Refeai, Sharm El-Sheikh Desalination plant:
hydrogeological and environmental approach, J. Petrol. Eng.,
2 (1999) 1–21.
- R.A. Awwad, T.N. Olsthoorn, Y. Zhou, S. Uhlenbrook, E. Smidt,
Optimum Pumping-Injection System for Saline Groundwater
Desalination in Sharm El-Sheikh, Water Mill Working Paper
No. 11, 2008, pp. 1–21.
- A.A. El-Refeai, Water Resources of Southern Sinai Egypt
Geomorphological and Hydrogeological Studies, Ph.D. Sci.
Thesis, Faculty of Science Cairo University, 1992.
- H. Isawi, M.H. El-Sayed, M.A. Eissa, O. Shouakar-Stash,
H. Shawky, M.S. Abdel Mottaleb, Integrated geochemistry,
isotopes, and geostatistical techniques to investigate
groundwater sources and salinization origin in the Sharm
El-Shiekh area, South Sinia, Egypt, Water Air Soil Pollut.,
227 (2016), doi: 10.1007/s11270-016-2848-5.
- EGSMA: Egyptian Geological Survey and Mining Authority,
Geological Map of Sinai, Arab Republic of Egypt, Scale
1:250,000, 1994.
- CONOCO, Geological Map of Egypt, NF 36 NW El Sad El Ali,
Scale 1:500000, The Egyptian General Petroleum Corporation,
Conoco Coral, 1987.
- M. Yousif, M.H. Hussien, Flash Floods Mitigation and
Assessment of Groundwater Possibilities Using Remote
Sensing and GIS Applications, Sharm El-Sheikh, South Sinai,
Egypt, Bulletin of the National Research Center, 2020.
- American Society for Testing Materials (ASTM), Water and
Environmental Technology Annual Book of ASTM Standards,
Sec. 11, Vol. 11.01 and 11.02, West Conshohocken, U.S.A., 2002.
- J.D. Hem, Study and Interpretation of the Chemical
Characteristics of Natural Water, 3rd ed., Scientific Publication,
Jodhpur, 1991, p. 2254.
- C.A.J. Appelo, Principles, caveats and improvements in
databases for calculating hydrogeochemical reactions in saline
waters from 0 to 200°C and 1 to 1000 atm, Appl. Geochem.,
55 (2015) 62–71.
- C.A.J. Appelo, D.L. Parkhurst, V.E.A. Post, Equations for
calculating hydrogeochemical reactions of minerals and gases
such as CO2 at high pressures and temperatures, Geochem.
Cosmochim. Acta, 125 (2014) 49–67.
- W. Guo, G.D. Bennett, SEAWAT Version 1.1: A Computer
Program for Simulation of Groundwater Flow of Variable
Density, Missimer International Inc., Fort Myers, Florida, 1998.
- C. Zheng, P.P. Wang, MT3DMS, A Modular Three-Dimensional
Multispecies Transport Model for Simulation of Advection,
Dispersion and Chemical Reactions of Contaminants
in Groundwater Systems, Vicksburg, Miss., Waterways
Experiment Station, US Army Corps of Engineers, 1998.
- A.W. Harbaugh, E.R. Banta, M.C. Hill, M.G. McDonald,
MODFLOW-2000, The U.S. Geological Survey Modular
Groundwater Model—User Guide to Modularization Concepts
and the Ground-Water Flow Processes, U.S. Geological Survey
Open File Report 00–92, 2000, 121p.
- M. Eissa, J.M. Thomas, G.M. Pohll, R.L. Hershey, K. Dahab,
M. Dawoud, M. Gomaa, A. El Shiekh, Groundwater resource
sustainability in the Wadi Watir delta, Gulf of Aqaba, Hydrogeol.
J., 21 (2013) 1833–1851.
- W.J. Deutsch, Groundwater Geochemistry: Fundamentals and
Applications to Contamination, CRC Press, Boca Raton, Florida,
1997.
- D.L. Parkhurst, C.A.J. Appelo, User’s Guide to PHREEQC
(Version 2) A Computer Program For Speciation, Batch-
Reaction, One dimensional Transport, and Inverse Geochemical
calculations, United States Geological Survey, Water Resources,
Investigations Report 99-4259, Washington, DC, 1999, p. 326.
- MSEA, Law 4 for the Protection of the Environment, 2006.
Available at http://www.eeaa.gov.eg/English/main/about.asp