References
- L.L. Zhang, Y.D. Song, Y. Zuo, S. Huo, C. Liang, C. Hu,
Integrated sulfur- and iron-based autotrophic denitrification
process and microbial profiling in an anoxic fluidized-bed
membrane bioreactor, Chemosphere, 221 (2019) 375–382.
- T.T. Zhu, H.Y. Cheng, L.H. Yang, S.G. Su, H.C. Wang, S.S. Wang,
A.J. Wang, Coupled sulfur and iron(II)
carbonate-driven
autotrophic denitrification for significantly enhanced nitrate
removal, Environ. Sci. Technol., 53 (2019) 1545–1554.
- Y.X. Xu, Study on Combined Treatment of Nitrate in
Groundwater by Sulfur and Eggshell/Ferrous Sulfide, China
University of Geosciences, Beijing, China, 2016.
- Y. Zhou, W.N. Mai, J.W. Liang, J.H. Dai, Y. Niu, W.L. Li, Q. Tang,
Nitrogen removal performance of a sulfur/pyrite autotrophic
denitrification system, Environ. Sci., 40 (2019) 1885–1891.
- R.H. Li, L. Morrison, G. Collins, A.M. Li, X.M. Zhan,
Simultaneous nitrate and phosphate removal from wastewater
lacking organic matter through microbial oxidation of
pyrrhotite coupled to nitrate reduction, Water Res., 96 (2016)
32–41.
- B.B. Fu, J.X. Pan, J.D. Ma, F. Wang, H.Z. Wu, C.H. Wei, Evaluation
of advanced nitrogen removal from coking wastewater using
sulfide iron-containing sludge as a denitrification electron
donor, Environ. Sci., 39 (2018) 3262–3270.
- C. Trouve, P.W. Chazal, B. Gueroux, Denitrification by
new strains of Thiobacillus denitrificans under
non-standard
physicochemical conditions. Effect of temperature, pH, and
sulphur source, Environ. Technol., 19 (1998) 601–610.
- K. Baalsrud, K.S. Baalsrud, Studies on Thiobacillus denitrificans,
Arch. Microbiol., 20 (1954) 34–62.
- H.R. Beller Anaerobic, nitrate-dependent oxidation of U(IV)
oxide minerals by the chemolithoautotrophic bacterium
Thiobacillus denitrificans, Appl. Environ. Microbiol., 71 (2005)
2170–2174.
- J. Pu, C. Feng, Y. Liu, R. Li, Z. Kong, N. Chen, S. Tong, C. Hao,
Y. Liu, Pyrite-based autotrophic denitrification for remediation
of nitrate contaminated groundwater, Bioresour. Technol.,
173 (2014) 117–123.
- Ministry of Environmental Protection, Water Quality-Determination of Inorganic Anions (F–, Cl–, NO2–,
Br–, NO3–, PO43–,
SO32–, SO42–) – Ion Chromatography, HJ 84-2016 Replaces HJ/T
84-2001, 2016.
- Ministry of Environmental Protection, Water Quality-
Determination of Total Nitrogen-Alkaline Potassium Persulfate
Digestion UV Spectrophotometric Method, HJ 636-2012
Replaces GB 11894-89, 2012.
- I. Zerva, N. Remmas, P. Melidis, G. Sylaios, P. Stathopoulou,
G. Tsiamis, S. Ntougias, Biotreatment, microbial community
structure and valorization potential of pepper processing
wastewater in an immobilized cell bioreactor, Waste Biomass
Valorization, 13 (2022) 1431–1447.
- P.F. Kemp, J.Y. Aller, Bacterial diversity in aquatic and other
environments: what 16S rDNA libraries can tell us, FEMS
Microbiol. Ecol., 47 (2004) 161–177.
- E.H. Simpson, Measurement of diversity, Nature, 163 (1949)
688, doi: 10.1038/163688a0.
- M. Martin, Cutadapt removes adapter sequences from
high-throughput sequencing reads, EMBnet. J, 17 (2011),
doi: 10.14806/ej.17.1.200.
- J.J. Wang, B.C. Huang, J. Li, R.C. Jin, Advances and challenges
of sulfur-driven autotrophic denitrification (SDAD) for nitrogen
removal, Chin. Chem. Lett., 31 (2020) 2567–2574.
- L.B. Chu, J.L. Wang, Denitrification of groundwater using
PHBV blends in packed bed reactors and the microbial diversity,
Chemosphere, 155 (2016) 463–470.
- J.L. Wang, L.B. Chu, Biological nitrate removal from water and
wastewater by solid-phase denitrification process, Biotechnol.
Adv., 34 (2016) 1103–1112.
- W. Zhang, Simultaneous Removal of Nitrogen and Phosphorus
from Secondary Effluent by Autotrophic Denitrification Based
on Pyrite, China University of Geosciences, China, 2019.
- A.P. Chandra, A.R. Gerson, The mechanisms of pyrite oxidation
and leaching: a fundamental perspective, Surf. Sci. Rep.,
65 (2010) 293–315.
- A. Schippers, B.B. Jørgensen, Biogeochemistry of pyrite and iron
sulfide oxidation in marine sediments, Geochim. Cosmochim.
Acta, 66 (2002) 85–92.
- L. Oberauner, C. Zachow, S. Lackner, C. Högenauer, K.-H. Smolle,
G. Berg, The ignored diversity: complex bacterial communities
in intensive care units revealed by 16S pyrosequencing, Sci.
Rep., 3 (2013) 1413, doi:10.1038/srep01413.
- J.D. Ma, J.Y. Wei, Q.P. Kong, Z.M. Li, J.X. Pan, B. Chen, G.L. Qiu,
H.Z. Wu, S. Zhu, C.H. Wei, Synergy between autotrophic
denitrification and anammox driven by FeS in a fluidized
bed bioreactor for advanced nitrogen removal, Chemosphere,
280 (2021) 130726, doi: 10.1016/j.chemosphere.2021.130726.
- Y. Yang, S. Gerrity, G. Collins, T. Chen, R.H. Li, S.H. Xie,
X.M. Zhan, Enrichment and characterization of autotrophic
Thiobacillus denitrifiers from anaerobic sludge for nitrate
removal, Process Biochem., 68 (2018) 165–170.
- B.B. Fu, Study on Autotrophic Denitrification Performance
Using Sulfur-Containing Iron Chemical Sludge as Electron
Donor, South China University of Technology, China, 2018.
- N. Brown, A. Shilton, Luxury uptake of phosphorus by
microalgae in waste stabilisation ponds: current understanding
and future direction, Rev. Environ. Sci. Biotechnol., 13 (2014)
321–328.
- S.E. Oh, Y.B. Yoo, J.C. Young, I.S. Kim, Effect of organics on
sulfur-utilizing autotrophic denitrification under mixotrophic
conditions, J. Biotechnol., 92 (2001) 1–8.
- M. Dopson, B.E. Lindstroem, Potential role of Thiobacillus
caldus in arsenopyrite bioleaching, Appl. Environ. Microbiol.,
65 (1999) 36–40.
- R. Li, C.P. Feng, B.D. Xi, N. Chen, Y. Jiang, Y. Zhao,
M.X. Li, Q.L. Dang, B.W. Zhao, Nitrate removal efficiency
of a mixotrophic denitrification wall for nitrate-polluted
groundwater in situ remediation, Ecol. Eng., 106 (2017) 523–531.
- M.F. Shao, T. Zhang, H.P. Fang, Sulfur-driven autotrophic
denitrification: diversity, biochemistry, and engineering
applications, Appl. Microbiol. Biotechnol., 88 (2010) 1027–1042.
- Q.T. Hu, Isolation and Characterization of Novel Species of
Sulfurimonas from Deep-sea Hydrothermal Vents and Analysis
of Their Chemoautotrophic Metabolisms, Ningbo University,
Zhejiang, China, 2019.
- K.L. Straub, M. Benz, B. Schink, E. Widdel, Anaerobic, nitratedependent
microbial oxidation of ferrous iron, Appl. Environ.
Microbiol., 62 (1996) 1458–1460.
- D.P. Kelly, A.P. Wood Halothiobacillus, Bergey’s Manual of
Systematics of Archaea and Bacteria, 2015.
- J.F. Luo, Microbial Community Analysis and Characterization
of Sulfur-Oxidizing Bacteria, South China University of
Technology, Guangzhou, China, 2011.
- X.Q. Tan, The Diversity and Sulfur Metabolic Pathway of
Sulfur Oxidizing Bacteria in the Pearl River Water, South China
University of Technology, Guangdong, China, 2016.
- K.P. Sujogya, B. Bhaskar, N. Kinshuk, K.C. Nayak, S. Shivaji,
F.A. Rainey, S.K. Das, Thiomonas bhubaneswarensis sp. nov., an
obligately mixotrophic, moderately thermophilic, thiosulfateoxidizing
bacterium, Int. J. Syst. Evol. Microbiol., 59 (2009)
2171–2175.
- H.R. Beller, P.S. Chain, T.E. Letain, A. Chakicherla, F.W. Larimer,
P.M. Richardson, M.A. Coleman, A.P. Wood, D.P. Kelly, The
genome sequence of the obligately chemolithoautotrophic,
facultatively anaerobic bacterium Thiobacillus denitrificans,
J. Bacteriol., 188 (2006) 1473–1488.
- S.C.M. Haaijer, L.P.M. Lamers, A.J.P. Smolders, M.S.M. Jetten,
H.J.M. Op den Camp, Iron sulfide and pyrite as potential
electron donors for microbial nitrate reduction in freshwater
wetlands, Geomicrobiol. J., 24 (2007) 391–401.