References

  1. L.L. Zhang, Y.D. Song, Y. Zuo, S. Huo, C. Liang, C. Hu, Integrated sulfur- and iron-based autotrophic denitrification process and microbial profiling in an anoxic fluidized-bed membrane bioreactor, Chemosphere, 221 (2019) 375–382.
  2. T.T. Zhu, H.Y. Cheng, L.H. Yang, S.G. Su, H.C. Wang, S.S. Wang, A.J. Wang, Coupled sulfur and iron(II)
    carbonate-driven autotrophic denitrification for significantly enhanced nitrate removal, Environ. Sci. Technol., 53 (2019) 1545–1554.
  3. Y.X. Xu, Study on Combined Treatment of Nitrate in Groundwater by Sulfur and Eggshell/Ferrous Sulfide, China University of Geosciences, Beijing, China, 2016.
  4. Y. Zhou, W.N. Mai, J.W. Liang, J.H. Dai, Y. Niu, W.L. Li, Q. Tang, Nitrogen removal performance of a sulfur/pyrite autotrophic denitrification system, Environ. Sci., 40 (2019) 1885–1891.
  5. R.H. Li, L. Morrison, G. Collins, A.M. Li, X.M. Zhan, Simultaneous nitrate and phosphate removal from wastewater lacking organic matter through microbial oxidation of pyrrhotite coupled to nitrate reduction, Water Res., 96 (2016) 32–41.
  6. B.B. Fu, J.X. Pan, J.D. Ma, F. Wang, H.Z. Wu, C.H. Wei, Evaluation of advanced nitrogen removal from coking wastewater using sulfide iron-containing sludge as a denitrification electron donor, Environ. Sci., 39 (2018) 3262–3270.
  7. C. Trouve, P.W. Chazal, B. Gueroux, Denitrification by new strains of Thiobacillus denitrificans under
    non-standard physicochemical conditions. Effect of temperature, pH, and sulphur source, Environ. Technol., 19 (1998) 601–610.
  8. K. Baalsrud, K.S. Baalsrud, Studies on Thiobacillus denitrificans, Arch. Microbiol., 20 (1954) 34–62.
  9. H.R. Beller Anaerobic, nitrate-dependent oxidation of U(IV) oxide minerals by the chemolithoautotrophic bacterium Thiobacillus denitrificans, Appl. Environ. Microbiol., 71 (2005) 2170–2174.
  10. J. Pu, C. Feng, Y. Liu, R. Li, Z. Kong, N. Chen, S. Tong, C. Hao, Y. Liu, Pyrite-based autotrophic denitrification for remediation of nitrate contaminated groundwater, Bioresour. Technol., 173 (2014) 117–123.
  11. Ministry of Environmental Protection, Water Quality-Determination of Inorganic Anions (F, Cl, NO2,
    Br, NO3, PO43–, SO32–, SO42–) – Ion Chromatography, HJ 84-2016 Replaces HJ/T 84-2001, 2016.
  12. Ministry of Environmental Protection, Water Quality- Determination of Total Nitrogen-Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method, HJ 636-2012 Replaces GB 11894-89, 2012.
  13. I. Zerva, N. Remmas, P. Melidis, G. Sylaios, P. Stathopoulou, G. Tsiamis, S. Ntougias, Biotreatment, microbial community structure and valorization potential of pepper processing wastewater in an immobilized cell bioreactor, Waste Biomass Valorization, 13 (2022) 1431–1447.
  14. P.F. Kemp, J.Y. Aller, Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us, FEMS Microbiol. Ecol., 47 (2004) 161–177.
  15. E.H. Simpson, Measurement of diversity, Nature, 163 (1949) 688, doi: 10.1038/163688a0.
  16. M. Martin, Cutadapt removes adapter sequences from high-throughput sequencing reads, EMBnet. J, 17 (2011), doi: 10.14806/ej.17.1.200.
  17. J.J. Wang, B.C. Huang, J. Li, R.C. Jin, Advances and challenges of sulfur-driven autotrophic denitrification (SDAD) for nitrogen removal, Chin. Chem. Lett., 31 (2020) 2567–2574.
  18. L.B. Chu, J.L. Wang, Denitrification of groundwater using PHBV blends in packed bed reactors and the microbial diversity, Chemosphere, 155 (2016) 463–470.
  19. J.L. Wang, L.B. Chu, Biological nitrate removal from water and wastewater by solid-phase denitrification process, Biotechnol. Adv., 34 (2016) 1103–1112.
  20. W. Zhang, Simultaneous Removal of Nitrogen and Phosphorus from Secondary Effluent by Autotrophic Denitrification Based on Pyrite, China University of Geosciences, China, 2019.
  21. A.P. Chandra, A.R. Gerson, The mechanisms of pyrite oxidation and leaching: a fundamental perspective, Surf. Sci. Rep., 65 (2010) 293–315.
  22. A. Schippers, B.B. Jørgensen, Biogeochemistry of pyrite and iron sulfide oxidation in marine sediments, Geochim. Cosmochim. Acta, 66 (2002) 85–92.
  23. L. Oberauner, C. Zachow, S. Lackner, C. Högenauer, K.-H. Smolle, G. Berg, The ignored diversity: complex bacterial communities in intensive care units revealed by 16S pyrosequencing, Sci. Rep., 3 (2013) 1413, doi:10.1038/srep01413.
  24. J.D. Ma, J.Y. Wei, Q.P. Kong, Z.M. Li, J.X. Pan, B. Chen, G.L. Qiu, H.Z. Wu, S. Zhu, C.H. Wei, Synergy between autotrophic denitrification and anammox driven by FeS in a fluidized bed bioreactor for advanced nitrogen removal, Chemosphere, 280 (2021) 130726, doi: 10.1016/j.chemosphere.2021.130726.
  25. Y. Yang, S. Gerrity, G. Collins, T. Chen, R.H. Li, S.H. Xie, X.M. Zhan, Enrichment and characterization of autotrophic Thiobacillus denitrifiers from anaerobic sludge for nitrate removal, Process Biochem., 68 (2018) 165–170.
  26. B.B. Fu, Study on Autotrophic Denitrification Performance Using Sulfur-Containing Iron Chemical Sludge as Electron Donor, South China University of Technology, China, 2018.
  27. N. Brown, A. Shilton, Luxury uptake of phosphorus by microalgae in waste stabilisation ponds: current understanding and future direction, Rev. Environ. Sci. Biotechnol., 13 (2014) 321–328.
  28. S.E. Oh, Y.B. Yoo, J.C. Young, I.S. Kim, Effect of organics on sulfur-utilizing autotrophic denitrification under mixotrophic conditions, J. Biotechnol., 92 (2001) 1–8.
  29. M. Dopson, B.E. Lindstroem, Potential role of Thiobacillus caldus in arsenopyrite bioleaching, Appl. Environ. Microbiol., 65 (1999) 36–40.
  30. R. Li, C.P. Feng, B.D. Xi, N. Chen, Y. Jiang, Y. Zhao, M.X. Li, Q.L. Dang, B.W. Zhao, Nitrate removal efficiency of a mixotrophic denitrification wall for nitrate-polluted groundwater in situ remediation, Ecol. Eng., 106 (2017) 523–531.
  31. M.F. Shao, T. Zhang, H.P. Fang, Sulfur-driven autotrophic denitrification: diversity, biochemistry, and engineering applications, Appl. Microbiol. Biotechnol., 88 (2010) 1027–1042.
  32. Q.T. Hu, Isolation and Characterization of Novel Species of Sulfurimonas from Deep-sea Hydrothermal Vents and Analysis of Their Chemoautotrophic Metabolisms, Ningbo University, Zhejiang, China, 2019.
  33. K.L. Straub, M. Benz, B. Schink, E. Widdel, Anaerobic, nitratedependent microbial oxidation of ferrous iron, Appl. Environ. Microbiol., 62 (1996) 1458–1460.
  34. D.P. Kelly, A.P. Wood Halothiobacillus, Bergey’s Manual of Systematics of Archaea and Bacteria, 2015.
  35. J.F. Luo, Microbial Community Analysis and Characterization of Sulfur-Oxidizing Bacteria, South China University of Technology, Guangzhou, China, 2011.
  36. X.Q. Tan, The Diversity and Sulfur Metabolic Pathway of Sulfur Oxidizing Bacteria in the Pearl River Water, South China University of Technology, Guangdong, China, 2016.
  37. K.P. Sujogya, B. Bhaskar, N. Kinshuk, K.C. Nayak, S. Shivaji, F.A. Rainey, S.K. Das, Thiomonas bhubaneswarensis sp. nov., an obligately mixotrophic, moderately thermophilic, thiosulfateoxidizing bacterium, Int. J. Syst. Evol. Microbiol., 59 (2009) 2171–2175.
  38. H.R. Beller, P.S. Chain, T.E. Letain, A. Chakicherla, F.W. Larimer, P.M. Richardson, M.A. Coleman, A.P. Wood, D.P. Kelly, The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans, J. Bacteriol., 188 (2006) 1473–1488.
  39. S.C.M. Haaijer, L.P.M. Lamers, A.J.P. Smolders, M.S.M. Jetten, H.J.M. Op den Camp, Iron sulfide and pyrite as potential electron donors for microbial nitrate reduction in freshwater wetlands, Geomicrobiol. J., 24 (2007) 391–401.