References
- L.A. Brun, J. Maillet, P. Hinsinger, M. Pépin, Evaluation
of copper availability to plants in copper-contaminated
vineyard soils, Environ. Pollut., 111 (2001) 293–302.
- A.C. Gonçalves Jr., H. Nacke, D. Schwantes, I.A. Nava, L. Strey,
Phytoavailability of toxic heavy metals and productivity
in wheat cultivated under residual effect of fertilization in
soybean culture, Water Air Soil Pollut., 220 (2011) 205–211.
- J. Manfrin, D. Schwantes, A.C. Gonçalves Jr., M.C. Ferronato,
V. Aleixo, A. da P. Schiller, Contamination by lead in sediments
at Toledo River, hydrographic basin of PARANÁ III, Environ.
Monit. Assess., 190 (2018) 1–12.
- S.O. Kim, S.H. Moon, K.W. Kim, Removal of heavy metals
from soils using enhanced electro kinetic soil processing, Water
Air Soil Pollut., 125 (2001) 259–272.
- C. Keller, M. Marchetti, L. Rossi, N. Lugon-Moulin, Reduction
of cadmium availability to tobacco (Nicotiana tabacum) plants
using soil amendments in low cadmium-contaminated
agricultural soils: a pot experiment, Plant Soil., 276 (2005) 69–84.
- M. Yamato, S. Yoshida, K. Iwase, Cadmium accumulation in
Crassocephalum crepidioides (Benth.) S. Moore (Compositae)
in heavy-metal polluted soils and Cd-added conditions in
hydroponic and pot cultures, Soil Sci. Plant Nutr., 54 (2008)
738–743.
- D. Schwantes, A.C. Gonçalves Jr., A. da P. Schiller, J. Manfrin,
M.A. Campagnolo, E. Somavilla, Pistia stratiotes in the
phytoremediation and post-treatment of domestic sewage, Int.
J. Phytorem., 21 (2019) 714–723.
- H. Nacke, A.C. Gonçalves Jr., D. Schwantes, I.A. Nava,
L. Strey, G.F. Coelho, Availability of heavy metals (Cd, Pb,
and Cr) in agriculture from commercial fertilizers, Arch.
Environ. Contam. Toxicol., 64 (2013) 537–544.
- L.T. Danh, P. Truong, R. Mammucari, T. Tran, N. Foster,
Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation
of heavy metals and organic wastes, Int. J.
Phytorem., 11 (2009) 664–691.
- P.C. Abhilash, J.R. Powell, H.B. Singh, B.K. Singh, Plantmicrobe
interactions: novel applications for exploitation in
multipurpose remediation technologies, Trends Biotechnol.,
30 (2012) 416–420.
- V. Oliveira, N.C.M. Gomes, A. Almeida, A.M.S. Silva,
H. Silva, A. Cunha, Microbe-assisted phytoremediation
of hydrocarbons in estuarine environments, Microb. Ecol.,
69 (2015) 1–12.
- J. Griboff, D.A. Wunderlin, M.V. Monferran, Phytofiltration
of As3+, As5+, and Hg by the aquatic macrophyte Potamogeton
pusillus L, and its potential use in the treatment of wastewater,
Int. J. Phytorem., 20 (2018) 914–921.
- A. Rodríguez-Vila, V. Asensio, R. Forján, E.F. Covelo, Chemical
fractionation of Cu, Ni, Pb and Zn in a mine soil amended
with compost and biochar and vegetated with Brassica juncea L, J. Geochem. Explor., 158 (2015) 74–81.
- W. Meeinkuirt, P. Pokethitiyook, M. Kruatrachue, P. Tanhan,
R. Chaiyarat, Phytostabilization of a Pb-contaminated
mine tailing by various tree species in pot and field trial
experiments, Int. J. Phytorem., 14 (2012) 925–938.
- I. Angin, M. Turan, Q.M. Ketterings, A. Cakici, Humic acid
addition enhances B and Pb phytoextraction by vetiver grass
(Vetiveria zizanioides (L.) Nash), Water Air Soil Pollut., 188 (2008)
335–343.
- N. Lugon-Moulin, M. Zhang, F. Gadani, L. Rossi, D. Koller,
M. Krauss, G.J. Wagner, Critical review of the science
and options for reducing cadmium in tobacco (Nicotiana
tabacum L.) and other plants, Adv. Agron., 83 (2004) 111–180.
- S.M. Ibrahim, T.B. Goh, Changes in macroaggregation and
associated characteristics in mine tailings amended with
humic substances, Commun. Soil Sci. Plant Anal., 35 (2004)
1905–1922.
- M.W.H. Evangelou, H. Daghan, A. Schaeffer, The influence
of humic acids on the phytoextraction of cadmium from soil,
Chemosphere, 57 (2004) 207–213.
- S. Rebouillat, P.L.A. Fernand, Recent strategies for the development
of biosourced-monomers, oligomers and polymers-based
materials: a review with an innovation and a bigger data
focus, J. Biomater. Nanobiotechnol., 7 (2016) 167–213.
- T. Lagier, G. Feuillade-Cathalifaud, G. Matejka, Interactions
between copper and organic macromolecules: determination
of conditional complexation constants, Agronomie, 20 (2000)
537–546.
- C. Bassegio, M.A. Campagnolo, D. Schwantes, A.C. Gonçalves
Jr., J. Manfrin, A.D.P. Schiller, D. Bassegio, Growth and
accumulation of Pb by roots and shoots of Brassica juncea L, Int.
J. Phytorem., 22 (2020) 134–139.
- A.N. Beretta, A.V. Silbermann, L. Paladino, D. Torres,
D. Bassahun, R. Musselli, A. García-Lamohte, Soil texture
analyses using a hydrometer: modification of the Bouyoucos
method, Ciencia e Investigación Agraria, 41 (2014) 263–271.
- R.C. McDonald, R.F. Isbell, J.G. Speight, J. Walker,
M.S. Hopkins, Australian soil and land survey: field handbook
(No. Ed. 2), CSIRO Publishing, Inkata Press, 1998.
- B.W. Avery, C.L. Bascomb, Soil Survey Laboratory Methods,
Soil Survey of England and Wales, Harpenden, UK. No 6, 1982.
- D.A. Nelson, L. Sommers, Total carbon, organic carbon, and
organic matter. Methods of soil analysis: Part 2 chemical and
microbiological properties, 9 (1983) 539–579.
- B. Minasny, A.B. McBratney, D.M. Brough, D. Jacquier, Models
relating soil pH measurements in water and calcium chloride
that incorporate electrolyte concentration, Eur. J. Soil Sci.,
62 (2011) 728–732.
- J.D. Rhoades, Chapter 14 – Salinity: Electrical Conductivity
and Total Dissolved Solids, R.L. Sparks, Ed., Methods of Soil
Analysis: Part 3 Chemical Methods, Soil Science Society of
America, Madison, 1996, pp. 417–435.
- A. Walkley, I.A. Black, An examination of the Degtjareff
method for determining soil organic matter, and a proposed
modification of the chromic acid titration method, Soil Sci.,
37 (1934) 29–38.
- J. Junsomboon, J. Jakmunee, Determination of potassium,
sodium, and total alkalies in portland cement, fly ash,
admixtures, and water of concrete by a simple flow injection
flame photometric system, J. Autom. Methods Manage. Chem.,
(2011) 742656, doi: 10.1155/2011/742656.
- J. Benton Jones Jr., V.W. Case, Chapter 15 – Sampling, Handling,
and Analyzing Plant Tissue Samples,
R.L. Westerman, Ed.,
Soil Testing and Plant Analysis, 1990, pp. 389–427.
- M.W.H. Evangelou, M. Ebel, A. Schaeffer, Evaluation of the
effect of small organic acids on phytoextraction of Cu and
Pb from soil with tobacco Nicotiana tabacum, Chemosphere,
63 (2006) 996–1004.
- S. Gupta, S. Nayek, R.N. Saha, S. Satpati, Assessment of heavy
metal accumulation in macrophyte, agricultural soil, and
crop plants adjacent to discharge zone of sponge iron factory,
Environ. Geol., 55 (2008) 731–739.
- A. Maldonado-Magaña, E. Favela-Torres, F. Rivera-Cabrera,
T.L. Volke-Sepulveda, Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production,
Plant Soil., 339 (2011) 377–389.
- A. Mahdavi, K. Khermandar, S. Ahmadi Asbchin,
R. Tabaraki, Lead accumulation potential in Acacia victoria,
Int. J. Phytorem., 16 (2014) 582–592.
- C. Kechavarzi, K. Pettersson, P. Leeds-Harrison, L. Ritchie,
S. Ledin, Root establishment of perennial ryegrass
(L. perenne)
in diesel contaminated subsurface soil layers, Environ.
Pollut., 145 (2007) 68–74.
- Z. Zhang, Z. Rengel, H. Chang, K. Meney, L. Pantelic,
R. Tomanovic, Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear
aromatic hydrocarbons (PAHs), Geoderma, 175 (2012) 1–8.
- A.C. Gonçalves Jr., D. Schwantes, R.F.B. de Sousa, T.R.B. da
Silva, V.F. Guimarães, M.A. Campagnolo,
E.S. de Vasconcelos,
J. Zimmermann, Phytoremediation capacity, growth and
physiological responses of Crambe abyssinica Hochst on soil
contaminated with Cd and Pb, J. Environ. Manage., 262 (2020)
110342, doi:
- 10.1016/j.jenvman.2020.110342.
- M.O. Mendez, R.M. Maier, Phytostabilization of mine
tailings in arid and semiarid environments—an emerging
remediation technology, Environ. Health Perspect., 116 (2008)
278–283.
- C. Bragato, H. Brix, M. Malagoli, Accumulation of nutrients
and heavy metals in Phragmites australis (Cav.) Trin. ex
Steudel and Bolboschoenus maritimus (L.) Palla in a constructed
wetland of the Venice lagoon watershed, Environ. Pollut.,
144 (2006) 967–975.
- B.V. Van Aken, P.A. Correa, J.L. Schnoor, Phytoremediation of
polychlorinated biphenyls: new trends and promises, Environ.
Sci. Technol., 44 (2010) 2767–2776.
- S. Gaskin, K. Soole, R. Bentham, Screening of Australian
native grasses for rhizoremediation of aliphatic hydrocarboncontaminated
soil, Int. J. Phytorem., 10 (2008) 378–389.
- N. Hechmi, N.B. Aissa, H. Abdennaceur, N. Jedidi,
Phytoremediation potential of maize (Zea mays L.) in
co-contaminated soils with pentachlorophenol and cadmium,
Int. J. Phytorem., 15 (2013) 703–713.
- R.M. Atiyeh, S. Lee, C.A. Edwards, N.Q. Arancon, J.D. Metzger,
The influence of humic acids derived from earthworm-processed
organic wastes on plant growth, Bioresour. Technol., 84 (2002)
7–14.
- K.E. Gerhardt, X. Huang, B.R. Glick, B.M. Greenberg,
Phytoremediation and rhizoremediation of organic soil
contaminants: potential and challenges, Plant Sci., 176 (2009)
20–30.
- C. Vargas, J. Pérez-Esteban, C. Escolástico, A. Masaguer,
A. Moliner, Phytoremediation of Cu and Zn by vetiver
grass in mine soils amended with humic acids, Environ. Sci.
Pollut. Res., 23 (2016) 13521–13530.
- L. Boruvka, O. Drábek, Heavy metal distribution between
fractions of humic substances in heavily polluted soils,
Plant Soil Environ., 50 (2004) 339–345.