References

  1. L.A. Brun, J. Maillet, P. Hinsinger, M. Pépin, Evaluation of copper availability to plants in copper-contaminated vineyard soils, Environ. Pollut., 111 (2001) 293–302.
  2. A.C. Gonçalves Jr., H. Nacke, D. Schwantes, I.A. Nava, L. Strey, Phytoavailability of toxic heavy metals and productivity in wheat cultivated under residual effect of fertilization in soybean culture, Water Air Soil Pollut., 220 (2011) 205–211.
  3. J. Manfrin, D. Schwantes, A.C. Gonçalves Jr., M.C. Ferronato, V. Aleixo, A. da P. Schiller, Contamination by lead in sediments at Toledo River, hydrographic basin of PARANÁ III, Environ. Monit. Assess., 190 (2018) 1–12.
  4. S.O. Kim, S.H. Moon, K.W. Kim, Removal of heavy metals from soils using enhanced electro kinetic soil processing, Water Air Soil Pollut., 125 (2001) 259–272.
  5. C. Keller, M. Marchetti, L. Rossi, N. Lugon-Moulin, Reduction of cadmium availability to tobacco (Nicotiana tabacum) plants using soil amendments in low cadmium-contaminated agricultural soils: a pot experiment, Plant Soil., 276 (2005) 69–84.
  6. M. Yamato, S. Yoshida, K. Iwase, Cadmium accumulation in Crassocephalum crepidioides (Benth.) S. Moore (Compositae) in heavy-metal polluted soils and Cd-added conditions in hydroponic and pot cultures, Soil Sci. Plant Nutr., 54 (2008) 738–743.
  7. D. Schwantes, A.C. Gonçalves Jr., A. da P. Schiller, J. Manfrin, M.A. Campagnolo, E. Somavilla, Pistia stratiotes in the phytoremediation and post-treatment of domestic sewage, Int. J. Phytorem., 21 (2019) 714–723.
  8. H. Nacke, A.C. Gonçalves Jr., D. Schwantes, I.A. Nava, L. Strey, G.F. Coelho, Availability of heavy metals (Cd, Pb, and Cr) in agriculture from commercial fertilizers, Arch. Environ. Contam. Toxicol., 64 (2013) 537–544.
  9. L.T. Danh, P. Truong, R. Mammucari, T. Tran, N. Foster, Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes, Int. J. Phytorem., 11 (2009) 664–691.
  10. P.C. Abhilash, J.R. Powell, H.B. Singh, B.K. Singh, Plantmicrobe interactions: novel applications for exploitation in multipurpose remediation technologies, Trends Biotechnol., 30 (2012) 416–420.
  11. V. Oliveira, N.C.M. Gomes, A. Almeida, A.M.S. Silva, H. Silva, A. Cunha, Microbe-assisted phytoremediation of hydrocarbons in estuarine environments, Microb. Ecol., 69 (2015) 1–12.
  12. J. Griboff, D.A. Wunderlin, M.V. Monferran, Phytofiltration of As3+, As5+, and Hg by the aquatic macrophyte Potamogeton pusillus L, and its potential use in the treatment of wastewater, Int. J. Phytorem., 20 (2018) 914–921.
  13. A. Rodríguez-Vila, V. Asensio, R. Forján, E.F. Covelo, Chemical fractionation of Cu, Ni, Pb and Zn in a mine soil amended with compost and biochar and vegetated with Brassica juncea L, J. Geochem. Explor., 158 (2015) 74–81.
  14. W. Meeinkuirt, P. Pokethitiyook, M. Kruatrachue, P. Tanhan, R. Chaiyarat, Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments, Int. J. Phytorem., 14 (2012) 925–938.
  15. I. Angin, M. Turan, Q.M. Ketterings, A. Cakici, Humic acid addition enhances B and Pb phytoextraction by vetiver grass (Vetiveria zizanioides (L.) Nash), Water Air Soil Pollut., 188 (2008) 335–343.
  16. N. Lugon-Moulin, M. Zhang, F. Gadani, L. Rossi, D. Koller, M. Krauss, G.J. Wagner, Critical review of the science and options for reducing cadmium in tobacco (Nicotiana tabacum L.) and other plants, Adv. Agron., 83 (2004) 111–180.
  17. S.M. Ibrahim, T.B. Goh, Changes in macroaggregation and associated characteristics in mine tailings amended with humic substances, Commun. Soil Sci. Plant Anal., 35 (2004) 1905–1922.
  18. M.W.H. Evangelou, H. Daghan, A. Schaeffer, The influence of humic acids on the phytoextraction of cadmium from soil, Chemosphere, 57 (2004) 207–213.
  19. S. Rebouillat, P.L.A. Fernand, Recent strategies for the development of biosourced-monomers, oligomers and polymers-based materials: a review with an innovation and a bigger data focus, J. Biomater. Nanobiotechnol., 7 (2016) 167–213.
  20. T. Lagier, G. Feuillade-Cathalifaud, G. Matejka, Interactions between copper and organic macromolecules: determination of conditional complexation constants, Agronomie, 20 (2000) 537–546.
  21. C. Bassegio, M.A. Campagnolo, D. Schwantes, A.C. Gonçalves Jr., J. Manfrin, A.D.P. Schiller, D. Bassegio, Growth and accumulation of Pb by roots and shoots of Brassica juncea L, Int. J. Phytorem., 22 (2020) 134–139.
  22. A.N. Beretta, A.V. Silbermann, L. Paladino, D. Torres, D. Bassahun, R. Musselli, A. García-Lamohte, Soil texture analyses using a hydrometer: modification of the Bouyoucos method, Ciencia e Investigación Agraria, 41 (2014) 263–271.
  23. R.C. McDonald, R.F. Isbell, J.G. Speight, J. Walker, M.S. Hopkins, Australian soil and land survey: field handbook (No. Ed. 2), CSIRO Publishing, Inkata Press, 1998.
  24. B.W. Avery, C.L. Bascomb, Soil Survey Laboratory Methods, Soil Survey of England and Wales, Harpenden, UK. No 6, 1982.
  25. D.A. Nelson, L. Sommers, Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 2 chemical and microbiological properties, 9 (1983) 539–579.
  26. B. Minasny, A.B. McBratney, D.M. Brough, D. Jacquier, Models relating soil pH measurements in water and calcium chloride that incorporate electrolyte concentration, Eur. J. Soil Sci., 62 (2011) 728–732.
  27. J.D. Rhoades, Chapter 14 – Salinity: Electrical Conductivity and Total Dissolved Solids, R.L. Sparks, Ed., Methods of Soil Analysis: Part 3 Chemical Methods, Soil Science Society of America, Madison, 1996, pp. 417–435.
  28. A. Walkley, I.A. Black, An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method, Soil Sci., 37 (1934) 29–38.
  29. J. Junsomboon, J. Jakmunee, Determination of potassium, sodium, and total alkalies in portland cement, fly ash, admixtures, and water of concrete by a simple flow injection flame photometric system, J. Autom. Methods Manage. Chem., (2011) 742656, doi: 10.1155/2011/742656.
  30. J. Benton Jones Jr., V.W. Case, Chapter 15 – Sampling, Handling, and Analyzing Plant Tissue Samples,
    R.L. Westerman, Ed., Soil Testing and Plant Analysis, 1990, pp. 389–427.
  31. M.W.H. Evangelou, M. Ebel, A. Schaeffer, Evaluation of the effect of small organic acids on phytoextraction of Cu and Pb from soil with tobacco Nicotiana tabacum, Chemosphere, 63 (2006) 996–1004.
  32. S. Gupta, S. Nayek, R.N. Saha, S. Satpati, Assessment of heavy metal accumulation in macrophyte, agricultural soil, and crop plants adjacent to discharge zone of sponge iron factory, Environ. Geol., 55 (2008) 731–739.
  33. A. Maldonado-Magaña, E. Favela-Torres, F. Rivera-Cabrera, T.L. Volke-Sepulveda, Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production, Plant Soil., 339 (2011) 377–389.
  34. A. Mahdavi, K. Khermandar, S. Ahmadi Asbchin, R. Tabaraki, Lead accumulation potential in Acacia victoria, Int. J. Phytorem., 16 (2014) 582–592.
  35. C. Kechavarzi, K. Pettersson, P. Leeds-Harrison, L. Ritchie, S. Ledin, Root establishment of perennial ryegrass
    (L. perenne) in diesel contaminated subsurface soil layers, Environ. Pollut., 145 (2007) 68–74.
  36. Z. Zhang, Z. Rengel, H. Chang, K. Meney, L. Pantelic, R. Tomanovic, Phytoremediation potential of Juncus subsecundus in soils contaminated with cadmium and polynuclear aromatic hydrocarbons (PAHs), Geoderma, 175 (2012) 1–8.
  37. A.C. Gonçalves Jr., D. Schwantes, R.F.B. de Sousa, T.R.B. da Silva, V.F. Guimarães, M.A. Campagnolo,
    E.S. de Vasconcelos, J. Zimmermann, Phytoremediation capacity, growth and physiological responses of Crambe abyssinica Hochst on soil contaminated with Cd and Pb, J. Environ. Manage., 262 (2020) 110342, doi:
  38. 10.1016/j.jenvman.2020.110342.
  39. M.O. Mendez, R.M. Maier, Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology, Environ. Health Perspect., 116 (2008) 278–283.
  40. C. Bragato, H. Brix, M. Malagoli, Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed, Environ. Pollut., 144 (2006) 967–975.
  41. B.V. Van Aken, P.A. Correa, J.L. Schnoor, Phytoremediation of polychlorinated biphenyls: new trends and promises, Environ. Sci. Technol., 44 (2010) 2767–2776.
  42. S. Gaskin, K. Soole, R. Bentham, Screening of Australian native grasses for rhizoremediation of aliphatic hydrocarboncontaminated soil, Int. J. Phytorem., 10 (2008) 378–389.
  43. N. Hechmi, N.B. Aissa, H. Abdennaceur, N. Jedidi, Phytoremediation potential of maize (Zea mays L.) in co-contaminated soils with pentachlorophenol and cadmium, Int. J. Phytorem., 15 (2013) 703–713.
  44. R.M. Atiyeh, S. Lee, C.A. Edwards, N.Q. Arancon, J.D. Metzger, The influence of humic acids derived from earthworm-processed organic wastes on plant growth, Bioresour. Technol., 84 (2002) 7–14.
  45. K.E. Gerhardt, X. Huang, B.R. Glick, B.M. Greenberg, Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges, Plant Sci., 176 (2009) 20–30.
  46. C. Vargas, J. Pérez-Esteban, C. Escolástico, A. Masaguer, A. Moliner, Phytoremediation of Cu and Zn by vetiver grass in mine soils amended with humic acids, Environ. Sci. Pollut. Res., 23 (2016) 13521–13530.
  47. L. Boruvka, O. Drábek, Heavy metal distribution between fractions of humic substances in heavily polluted soils, Plant Soil Environ., 50 (2004) 339–345.