References
- S. Zeinali Heris, S.Gh. Etemad, M. Nasr Esfahany, Experimental
investigation of oxide nanofluids laminar flow convective heat
transfer, Int. Commun. Heat Mass Transfer, 33 (2006) 529–535.
- K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size
on the convective heat transfer in nanofluid in the developing
region, Int. Commun. Heat Mass Transfer, 52 (2009) 2189–2195.
- U.K. Ahmad, M. Hasreen, N.A. Yahaya, B. Rosnadiah,
Comparative study of heat transfer and friction factor
characteristics of nanofluids in rectangular channel, Procedia
Eng., 170 (2017) 541–546.
- L. Xu, J.L. Xu, Nanofluid stabilizes and enhances convective
boiling heat transfer in a single microchannel, Int. Commun.
Heat Mass Transfer, 55 (2012) 5673–5686.
- Z. Edalati, S.Z. Heris, S.H. Noi, The study of laminar convective
heat transfer of CuO/water nanofluid through an equilateral
triangular duct at constant wall heat flux, Heat Transfer – Asian
Res., 41 (2012) 418–429.
- M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, Laminar
convective heat transfer of non–Newtonian nanofluids with
constant wall temperature, Heat Mass Transfer, 47 (2011)
203–209.
- Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu,
Heat transfer properties of nanoparticle in-fluid dispersions
(nanofluids) in laminar flow, Int. J. Heat Mass Transfer,
48 (2005) 1107–1116.
- W. Duangthongsuk, S. Wongwises, Heat transfer enhancement
and pressure drop characteristics of TiO2–water nanofluid in
a double-tube counter flow heat exchanger, Int. J. Heat Mass
Transfer, 52 (2009) 2059–2067.
- M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza,
S.V. Paras, Effect of nanofluids on the performance of a
miniature plate heat exchanger with modulated surface, Int. J.
Heat Fluid Flow, 30 (2009) 691–699.
- C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall
heat transfer in multi-channel heat exchanger by alumina
nanofluid, J. Alloys Compd., 504S (2010) S385–S388.
- M. Chandrasekar, S. Suresh, A. Chandra Bose, experimental
studies on heat transfer and friction factor characteristics of
Al2O3-water nanofluid in a circular pipe under laminar flow
with wire coil inserts, Exp. Therm. Fluid Sci., 34 (2010) 122–130.
- M.K. Moraveji, S. Razvarz, Experimental investigation of
aluminum oxide nanofluid on heat pipe thermal performance,
Int. Commun. Heat Mass Transfer, 39 (2012) 1444–1448.
- A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop
characteristics of CeO2/water nanofluid in plate heat exchanger,
Appl. Therm. Eng., 57 (2013) 24–32.
- D. Huang, Z. Wu, B. Sundén, Pressure drop and convective
heat transfer of Al2O3/water and MWCNT/water nanofluids
in a chevron plate heat exchanger, Int. J. Heat Mass Transfer,
89 (2015) 620–626.
- P.V. Durga Prasad, A.V.S.S.K.S. Gupta, M. Sreeramulu, L. Syam
Sundar, M.K. Singh, A.C.M. Sousa, Experimental study of heat
transfer and friction factor of Al2O3 nanofluid in U-tube heat
exchanger with helical tape inserts, Exp. Therm. Fluid Sci.,
62 (2015) 141–150.
- D.R. Ray, D.K. Das, R.S. Vajjha, Experimental and numerical
investigations ofnanofluids performance in a compact
minichannel plate heat exchanger, Int. J. Heat Mass Transfer,
71 (2014) 732–746.
- M.C.S. Reddy, V.V. Rao, Experimental investigation of heat
transfer coefficient and friction factor of ethylene glycol water
based TiO2 nanofluid in double pipe heat exchanger with and
without helical coil inserts, Int. Commun. Heat Mass Transfer,
50 (2014) 68–76.
- B.X. Wang, X.F. Peng, Experimental investigation on liquid
forced-convection heat transfer through microchannels, Int. J.
Heat Mass Transfer, 37 (1994) 73–82.
- M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam,
N. Kannadasan, Anisochilus carnosus leaf extract mediated
synthesis of zinc oxide nanoparticles for antibacterial and
photocatalytic activities, Mater. Sci. Semicond. Process.,
39 (2015) 621–628.
- S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Subramanian,
P.K. Praseetha, Green synthesis of zinc oxide nanoparticles
using Atalantia monophylla leaf extracts: characterization and
antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018)
39–45.
- S.J. Kline, F.A. McClintock, Describing uncertainties in singlesample
experiments, Mech. Eng., 75 (1953) 3–8.
- R. Barzegarian, M.K. Moraveji, A. Aloueyan, Experimental
investigation on heat transfer characteristics and pressure
drop of BPHE (brazed plate heat exchanger) using TiO2–water
nanofluid, Exp. Fluid Therm. Sci., 74 (2016) 11–18.
- W.W. Focke, J. Zacahriades, I. Oliver, The effect of the corrugation
inclination angle on the thermo hydraulic performance of plate
heat exchangers, Int. J. Heat Mass Transfer, 28 (1985) 1469–1479.
- B. Saleh, L. Syam Sundar, Experimental study on heat transfer,
friction factor, entropy and exergy efficiency analyses of
a corrugated plate heat exchanger using Ni/water nanofluids,
Int. J. Therm. Sci., 165 (2021) 106935, doi: 10.1016/j.
ijthermalsci.2021.106935.
- W.W. Focke, J. Zacahriades, I. Oliver, The effect of the
corrugation inclination angle on the thermohydraulic performance
of plate heat exchangers, Int. J. Heat Mass Transfer,
28 (1985) 1469–1479.
- R.K. Shah, W.W. Fock, E.C. Subbarao, R.A. Mashelkar, Plate
Heat Exchangers and Their Design Theory, in: Heat Transfer
Design, Hemisphere Publishing, Washington D.C., 1988.
- R.L. Hamilton, O.K. Crosser, Thermal conductivity of
heterogeneous two component systems, Ind. Eng. Chem.
Fundam., 1 (1962) 187–191.
- S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal
conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci.,
44 (2005) 367–375.
- W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced
thermal conductivity of nanofluids: a renovated Maxwell
model, J. Nanopart. Res., 5 (2003) 167–171.
- E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev,
S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity
and particle agglomeration in alumina nanofluids: experiment
and theory, Phys. Rev., 76 (2007) 061203, doi: 10.1103/
PhysRevE.76.061203.
- G.K. Batchelor, The effect of Brownian motion on the bulk stress
in a suspension of spherical particles, J. Fluid Mech., 83 (1977)
97–117.
- D.A. Drew, S.L. Passman, Theory of multi component fluids,
Appl. Math. Sci., (1999) 105–121.
- H.C. Brinkman, The viscosity of concentrated suspensions and
solution, J. Chem. Phys., 20 (1952) 571–581.
- X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of
nanoparticles–fluid mixture, J. Thermophys. Heat Transfer,
13 (1999) 474–480.
- W. Ahmed, Z.Z. Chowdhury, S.N. Kazi, M.R. Bin Johan,
I.A. Badruddin, M.E.M. Soudagar, S. Kamangar, M.A. Mujtaba,
M. Gul, T.M. Yunus Khan, Evaluation on enhanced heat
transfer using sonochemically synthesized stable
ZnO-Eg@
Dw nanofluids in horizontal calibrated circular flow passage,
Energies, 14 (2021) 2400, doi:10.3390/en14092400.
- Z. Li, M. Sarafraz, A. Mazinani, T. Hayat, H. Alsulami,
M. Goodarzi, Pool boiling heat transfer to CuO-H2O nanofluid
on finned surfaces, Int. J. Heat Mass Transfer, 156 (2020) 119780,
doi:10.1016/j.ijheatmasstransfer.2020.119780.