References

  1. S. Zeinali Heris, S.Gh. Etemad, M. Nasr Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Commun. Heat Mass Transfer, 33 (2006) 529–535.
  2. K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. Commun. Heat Mass Transfer, 52 (2009) 2189–2195.
  3. U.K. Ahmad, M. Hasreen, N.A. Yahaya, B. Rosnadiah, Comparative study of heat transfer and friction factor characteristics of nanofluids in rectangular channel, Procedia Eng., 170 (2017) 541–546.
  4. L. Xu, J.L. Xu, Nanofluid stabilizes and enhances convective boiling heat transfer in a single microchannel, Int. Commun. Heat Mass Transfer, 55 (2012) 5673–5686.
  5. Z. Edalati, S.Z. Heris, S.H. Noi, The study of laminar convective heat transfer of CuO/water nanofluid through an equilateral triangular duct at constant wall heat flux, Heat Transfer – Asian Res., 41 (2012) 418–429.
  6. M. Hojjat, S.Gh. Etemad, R. Bagheri, J. Thibault, Laminar convective heat transfer of non–Newtonian nanofluids with constant wall temperature, Heat Mass Transfer, 47 (2011) 203–209.
  7. Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer, 48 (2005) 1107–1116.
  8. W. Duangthongsuk, S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2–water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer, 52 (2009) 2059–2067.
  9. M.N. Pantzali, A.G. Kanaris, K.D. Antoniadis, A.A. Mouza, S.V. Paras, Effect of nanofluids on the performance of a miniature plate heat exchanger with modulated surface, Int. J. Heat Fluid Flow, 30 (2009) 691–699.
  10. C.S. Jwo, L.Y. Jeng, T.P. Teng, C.C. Chen, Performance of overall heat transfer in multi-channel heat exchanger by alumina nanofluid, J. Alloys Compd., 504S (2010) S385–S388.
  11. M. Chandrasekar, S. Suresh, A. Chandra Bose, experimental studies on heat transfer and friction factor characteristics of Al2O3-water nanofluid in a circular pipe under laminar flow with wire coil inserts, Exp. Therm. Fluid Sci., 34 (2010) 122–130.
  12. M.K. Moraveji, S. Razvarz, Experimental investigation of aluminum oxide nanofluid on heat pipe thermal performance, Int. Commun. Heat Mass Transfer, 39 (2012) 1444–1448.
  13. A.K. Tiwari, P. Ghosh, J. Sarkar, Heat transfer and pressure drop characteristics of CeO2/water nanofluid in plate heat exchanger, Appl. Therm. Eng., 57 (2013) 24–32.
  14. D. Huang, Z. Wu, B. Sundén, Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger, Int. J. Heat Mass Transfer, 89 (2015) 620–626.
  15. P.V. Durga Prasad, A.V.S.S.K.S. Gupta, M. Sreeramulu, L. Syam Sundar, M.K. Singh, A.C.M. Sousa, Experimental study of heat transfer and friction factor of Al2O3 nanofluid in U-tube heat exchanger with helical tape inserts, Exp. Therm. Fluid Sci., 62 (2015) 141–150.
  16. D.R. Ray, D.K. Das, R.S. Vajjha, Experimental and numerical investigations ofnanofluids performance in a compact minichannel plate heat exchanger, Int. J. Heat Mass Transfer, 71 (2014) 732–746.
  17. M.C.S. Reddy, V.V. Rao, Experimental investigation of heat transfer coefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts, Int. Commun. Heat Mass Transfer, 50 (2014) 68–76.
  18. B.X. Wang, X.F. Peng, Experimental investigation on liquid forced-convection heat transfer through microchannels, Int. J. Heat Mass Transfer, 37 (1994) 73–82.
  19. M. Anbuvannan, M. Ramesh, G. Viruthagiri, N. Shanmugam, N. Kannadasan, Anisochilus carnosus leaf extract mediated synthesis of zinc oxide nanoparticles for antibacterial and photocatalytic activities, Mater. Sci. Semicond. Process., 39 (2015) 621–628.
  20. S. Vijayakumar, S. Mahadevan, P. Arulmozhi, S. Subramanian, P.K. Praseetha, Green synthesis of zinc oxide nanoparticles using Atalantia monophylla leaf extracts: characterization and antimicrobial analysis, Mater. Sci. Semicond. Process., 82 (2018) 39–45.
  21. S.J. Kline, F.A. McClintock, Describing uncertainties in singlesample experiments, Mech. Eng., 75 (1953) 3–8.
  22. R. Barzegarian, M.K. Moraveji, A. Aloueyan, Experimental investigation on heat transfer characteristics and pressure drop of BPHE (brazed plate heat exchanger) using TiO2–water nanofluid, Exp. Fluid Therm. Sci., 74 (2016) 11–18.
  23. W.W. Focke, J. Zacahriades, I. Oliver, The effect of the corrugation inclination angle on the thermo hydraulic performance of plate heat exchangers, Int. J. Heat Mass Transfer, 28 (1985) 1469–1479.
  24. B. Saleh, L. Syam Sundar, Experimental study on heat transfer, friction factor, entropy and exergy efficiency analyses of a corrugated plate heat exchanger using Ni/water nanofluids, Int. J. Therm. Sci., 165 (2021) 106935, doi: 10.1016/j. ijthermalsci.2021.106935.
  25. W.W. Focke, J. Zacahriades, I. Oliver, The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers, Int. J. Heat Mass Transfer, 28 (1985) 1469–1479.
  26. R.K. Shah, W.W. Fock, E.C. Subbarao, R.A. Mashelkar, Plate Heat Exchangers and Their Design Theory, in: Heat Transfer Design, Hemisphere Publishing, Washington D.C., 1988.
  27. R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two component systems, Ind. Eng. Chem. Fundam., 1 (1962) 187–191.
  28. S.M.S. Murshed, K.C. Leong, C. Yang, Enhanced thermal conductivity of TiO2-water based nanofluids, Int. J. Therm. Sci., 44 (2005) 367–375.
  29. W. Yu, S.U.S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanopart. Res., 5 (2003) 167–171.
  30. E.V. Timofeeva, A.N. Gavrilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, L.M. Lopatina, J.V. Selinger, Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory, Phys. Rev., 76 (2007) 061203, doi: 10.1103/ PhysRevE.76.061203.
  31. G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83 (1977) 97–117.
  32. D.A. Drew, S.L. Passman, Theory of multi component fluids, Appl. Math. Sci., (1999) 105–121.
  33. H.C. Brinkman, The viscosity of concentrated suspensions and solution, J. Chem. Phys., 20 (1952) 571–581.
  34. X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticles–fluid mixture, J. Thermophys. Heat Transfer, 13 (1999) 474–480.
  35. W. Ahmed, Z.Z. Chowdhury, S.N. Kazi, M.R. Bin Johan, I.A. Badruddin, M.E.M. Soudagar, S. Kamangar, M.A. Mujtaba, M. Gul, T.M. Yunus Khan, Evaluation on enhanced heat transfer using sonochemically synthesized stable
    ZnO-Eg@ Dw nanofluids in horizontal calibrated circular flow passage, Energies, 14 (2021) 2400, doi:10.3390/en14092400.
  36. Z. Li, M. Sarafraz, A. Mazinani, T. Hayat, H. Alsulami, M. Goodarzi, Pool boiling heat transfer to CuO-H2O nanofluid on finned surfaces, Int. J. Heat Mass Transfer, 156 (2020) 119780, doi:10.1016/j.ijheatmasstransfer.2020.119780.