References

  1. A.M. Hameed, A. Alharbi, E.A. Abdelrahman, E.M. Mabrouk, R.M. Hegazey, F.K. Algethami, Y.O. Al-Ghamdi,
    H.M. Youssef, Facile hydrothermal fabrication of analcime and zeolite X for efficient removal of Cd(II) ions from aqueous media and polluted water, J. Inorg. Organomet. Polym. Mater., 30 (2020) 4117–4128.
  2. E.A.M. Ali, M.A. Sayed, T.M.A. Abdel-Rahman, R. Hussein, Fungal remediation of Cd(II) from wastewater using immobilization techniques, RSC Adv., 11 (2021) 4853–4863.
  3. Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications, Sep. Purif. Technol., 157 (2016) 141–161.
  4. K. Wang, J.W. Gu, N. Yin, Efficient removal of Pb(II) and Cd(II) using NH2-functionalized Zr-MOFs via rapid microwavepromoted synthesis, Ind. Eng. Chem. Res., 56 (2017) 1880–1887.
  5. L.K. Zhang, J.Y. Guo, X.M. Huang, W.D. Wang, P. Sun, Y.M. Li, J.H. Han, Functionalized biochar-supported magnetic MnFe2O4 nanocomposite for the removal of Pb(II) and Cd(II), RSC Adv., 9 (2019) 365–376.
  6. L. Song, Y.F. Feng, C.Q. Zhu, F.Q. Liu, A.M. Li, Enhanced synergistic removal of Cr(VI) and Cd(II) with bi-functional biomass-based composites, J. Hazard. Mater., 388 (2020) 121776, doi: 10.1016/j.jhazmat.2019.121776.
  7. S.Z. Guo, K. Wu, Y. Gao, L.H. Liu, X.X. Zhu, X.L. Li, F. Zhang, Efficient removal of Zn(II), Pb(II), and Cd(II) in waste water based on magnetic graphitic carbon nitride materials with enhanced adsorption capacity, J. Chem. Eng. Data., 63 (2018) 3902–3912.
  8. A. Jusoh, L.S. Shiung, N. Ali, M. Noor, A simulation study of the removal efficiency of granular activated carbon on cadmium and lead, Desalination, 206 (2007) 9–16.
  9. Y. Wei, Z.G. Liu, X.Y. Yu, L. Wang, J.H. Liu, X.J. Huang, O2-plasma oxidized multi-walled carbon nanotubes for Cd(II) and Pb(II) detection: evidence of adsorption capacity for electrochemical sensing, Electrochem. Commun., 13 (2011) 1506–1509.
  10. S. Kumar, R.R. Nair, P.B. Pillai, S.N. Gupta, M.A.R. Iyengar, A.K. Sood, Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water, ACS Appl. Mater. Interfaces, 6 (2014) 17426–17436.
  11. N. Li, W.B. Li, F.L. Fu, Removal of chromium(VI) by MnFe2O4 and ferrous ion: synergetic effects and reaction mechanism, Environ. Sci. Pollut. Res., 26 (2019) 30498–30507.
  12. J. Liu, S.X. Ren, J.L. Cao, D.C.W. Tsang, J.Z. Beiyuan, Y.T. Peng, F. Fang, J.Y. She, M.L. Yin, N.P. Shen, J. Wang, Highly efficient removal of thallium in wastewater by MnFe2O4-biochar composite, J. Hazard. Mater., 401 (2021) 123311, doi: 10.1016/j. jhazmat.2020.123311.
  13. Q. Chen, J.W. Zheng, Q. Yang, Z. Dang, L.J. Zhang, Insights into the glyphosate adsorption behavior and mechanism by a MnFe2O4@cellulose activated carbon magnetic hybrid, ACS Appl. Mater. Interfaces, 11 (2019) 15478–15488.
  14. S.J. Chen, F.C. Xie, Selective adsorption of copper(II) ions in mixed solution by Fe3O4-MnO2-EDTA magnetic nanoparticles, Appl. Surf. Sci., 507 (2020) 145090, doi: 10.1016/j.apsusc.2019.145090.
  15. S. Harendra, C. Vipulanandan, Sorption and transport studies of cetyl trimethylammonium bromide (CTAB) and Triton X-100 in clayey soil, J. Environ. Sci., 25 (2013) 576–584.
  16. C.J. Yu, H. Li, H.Y. Ma, L.M. Zhang, Y. Li, Q. Lin, Characteristics and mechanism of Cu(II) adsorption on prepared calcium alginate/carboxymethyl cellulose@MnFe2O4, Polym. Bull., 79 (2022) 1201–1216.
  17. C.X. Zhu, Y.X. Liu, C. Huo, H.Z. Liu, Enhancing the light olefin selectivity of an iron-based fischer–tropsch synthesis catalyst by modification with CTAB, RSC Adv., 8 (2018) 32073–32083.
  18. S.H. Yao, X.L. Zhu, Y. Wang, D.N. Zhang, S.F. Wang, Y.F. Jia, Simultaneous oxidation and removal of Sb(III) from water by using synthesized CTAB/MnFe2O4/MnO2 composite, Chemosphere, 245 (2020) 125601, doi:10.1016/j. chemosphere.2019.125601.
  19. J.W. Lin, X.X. Wang, Y.H. Zhan, Effect of precipitation pH and coexisting magnesium ion on phosphate adsorption onto hydrous zirconium oxide, J. Environ. Sci., 76 (2019) 167–187.
  20. R. Xu, G. Zhou, Y. Tang, L. Chu, C. Liu, Z. Zeng, S. Luo, New double network hydrogel adsorbent: highly efficient removal of Cd(II) and Mn(II) ions in aqueous solution, Chem. Eng. J., 275 (2015) 179–188.
  21. S. Azizian, Kinetic models of sorption: a theoretical analysis, J. Colloid Interface Sci., 276 (2004) 47–52.
  22. Y.S. Ho, Second-order kinetic model for the sorption of cadmium onto tree fern: a comparison of linear and non-linear methods, Water Res., 40 (2006) 119–125.
  23. F.C. Wu, R.L. Tseng, R.S. Juang, Initial behavior of intraparticle diffusion model used in the description of adsorption kinetics, Chem. Eng. J., 153 (2009) 1–8.
  24. X. Guo, J.L. Wang, A general kinetic model for adsorption: theoretical analysis and modeling, J. Mol. Liq.., 288 (2019) 111100, doi: 10.1016/j.molliq.2019.111100.
  25. Y.S. Zhao, Q. Li, H.J. Ren, R. Zhou, Activation of persulfate by magnetic MnFe2O4-bentonite for catalytic degradation of 2,4-dichlorophenol in aqueous solutions, Chem. Res. Chin. Univ., 33 (2017) 415–421.
  26. Y.Y. Wang, H.Y. Ji, H.H. Lu, Y.X. Liu, R.Q. Yang, L.L. He, S.M. Yang, Simultaneous removal of Sb(III) and Cd(II) in water by adsorption onto a MnFe2O4-biochar nanocomposite, RSC Adv., 8 (2018) 3264–3273.
  27. L. Zhu, Z. Shi, L. Deng, Y. Duan, Efficient degradation of sulfadiazine using magnetically recoverable
    MnFe2O4/δ-MnO2 hybrid as a heterogeneous catalyst of peroxymonosulfate, Colloids Surf., A., 609 (2021) 125637, doi: 10.1016/j. colsurfa.2020.125637.
  28. U. Lamdab, K. Wetchakun, W. Kangwansupamonkon, N. Wetchakun, Effect of a pH-controlled co-precipitation process on Rhodamine B adsorption of MnFe2O4 nanoparticles, RSC Adv., 8 (2018) 6709–6718.
  29. C.Z. Jin, G.X. Teng, Y. Gu, H. Cheng, S.P. Fu, C. Zhang, W.G. Ma, Functionalized hollow MnFe2O4 nanospheres: design, applications and mechanism for efficient adsorption of heavy metal ions, New J. Chem., 43 (2019) 5879–5889.
  30. M. He, Y. Zeng, F. Zhou, G. Kong, G. Wang, MnFe2O4 nanoparticles anchored on the surface of MgAl-layered double hydroxide nanoplates for stable magnetorheological fluids, J. Mol. Liq., 319 (2020) 114098, doi:10.1016/j.molliq.2020.114098.
  31. K. Shoueir, H. El-Sheshtawy, M. Misbah, H. El-Hosainy, I. El-Mehasseb, M. El-Kemary, Fenton-like nanocatalyst for photodegradation of methylene blue under visible light activated by hybrid green DNSA@Chitosan@MnFe2O4, Carbohydr. Polym., 197 (2018) 17–28.
  32. B. Boutra, N. Güy, M. Özacar, M. Trari, Magnetically separable MnFe2O4/TA/ZnO nanocomposites for photocatalytic degradation of Congo red under visible light, J. Magn. Magn. Mater., 497 (2020) 165994, doi:10.1016/j.jmmm.2019.165994.
  33. R.D.R. Kahmei, J.P. Borah, Clustering of MnFe2O4 nanoparticles and the effect of field intensity in the generation of heat for hyperthermia application, Nanotechnology, 30 (2019) 035706.
  34. S.S. Elanchezhiyan, S.M. Prabhu, J.H. Han, Y.M. Kim, Y. Yoon, C.M. Park, Synthesis and characterization of novel magnetic Zr-MnFe2O4@rGO nanohybrid for efficient removal of PFOA and PFOS from aqueous solutions, Appl. Surf. Sci., 528 (2020) 146579, doi: 10.1016/j.apsusc.2020.146579.
  35. A. Wang, Y. Chu, T. Muhmood, M.Z. Xia, Y. Xu, L. Yang, W. Lei, F.Y. Wang, Adsorption properties of Pb2+ by amino group’s functionalized montmorillonite from aqueous solutions, J. Chem. Eng. Data, 63 (2018) 2940–2949.
  36. N. Li, F. Fu, J. Lu, Z. Ding, B. Tang, J. Pang, Facile preparation of magnetic mesoporous MnFe2O4@SiO2CTAB composites for Cr(VI) adsorption and reduction, Environ. Pollut., 220 (2016) 1376–1385.
  37. W. Ding, H.L. Zheng, Y.J. Sun, Z.W. Zhao, X.Y. Zheng, Y.Y. Wu, W.L. Xiao, Activation of MnFe2O4 by sulfite for fast and efficient removal of arsenic(III) at circumneutral pH: involvement of Mn(III), J. Hazard. Mater., 403 (2021) 123623, doi: 10.1016/j.jhazmat.2020.123623.
  38. Z.Y. Duan, M.Y. Song, T.G. Li, S.L. Liu, X.J. Xu, R.G. Qin, C.H. He, Y. Wang, L.G. Xu, M.J. Zhang, Characterization and adsorption properties of cross-linked yeast/β-cyclodextrin polymers for Pb(II) and Cd(II) adsorption, RSC Adv., 8 (2018) 31542–31554.
  39. J.P. Simonin, On the comparison of pseudo-first-order and pseudo-second-order rate laws in the modeling of adsorption kinetics, Chem. Eng. J., 300 (2016) 254–263.
  40. D. Kołodyńska, J. Krukowska, P. Thomas, Comparison of sorption and desorption studies of heavy metal ions from biochar and commercial active carbon, Chem. Eng. J., 307 (2017) 353–363.
  41. N.A. Oladoja, A.K. Akinlab, Congo red biosorption on palm kernel seed coat, Ind. Eng. Chem. Res., 48 (2009) 6188–6196.
  42. G.E. Boyd, J. Schubert, A.W. Adamson, The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics, J. Am. Chem. Soc., 69 (1947) 2818–2829.
  43. Y.C. Wong, Y.S. Szeto, W.H. Cheung, G. McKay, Adsorption of acid dyes on chitosan—equilibrium isotherm analyses, Process Biochem., 39 (2004) 695–704.
  44. Y.M. Hao, M. Chen, Z.B. Hu, Effective removal of Cu(II) ions from aqueous solution by amino-functionalized magnetic nanoparticles, J. Hazard. Mater., 184 (2010) 392–399.
  45. A. Kumar, S. Prasad, P.N. Saxena, N.G. Ansari, D.K. Patel, Synthesis of an Alginate-Based Fe3O4–MnO2 xerogel and its application for the concurrent elimination of Cr(VI) and Cd(II) from aqueous solution, ACS Omega, 6 (2021) 3931–3945.
  46. P.L. Wang, T.T. Shen, X.Y. Li, Y.Y. Tang, Y.J. Li, Magnetic mesoporous calcium carbonate-based nanocomposites for the removal of toxic Pb(II) and Cd(II) ions from water, ACS Appl. Nano Mater., 3 (2020) 1272–1281.
  47. W.Q. Zuo, C. Chen, H.J. Cui, M.L. Fu, Enhanced removal of Cd(II) from aqueous solution using CaCO3 nanoparticle modified sewage sludge biochar, RSC Adv., 7 (2017) 16238–16243.
  48. J. Liang, X.M. Li, Z.G. Yu, G.M. Zeng, Y. Luo, L.B. Jiang, Z.X. Yang, Y.Y. Qian, H.P. Wu, Amorphous MnO2 modified biochar derived from aerobically composted swine manure for adsorption of Pb(II) and Cd(II), ACS Sustainable Chem. Eng., 5 (2017) 5049–5058.
  49. Y. Xian, J. Wu, G. Yang, R.T. Liao, X.H. Zhang, H. Peng, X.Y. Yu, F. Shen, L. Li, L.L. Wang, Adsorption characteristics of Cd(II) in aqueous solutions using spent mushroom substrate biochars produced at different pyrolysis temperatures, RSC Adv., 8 (2018) 28002–28012.
  50. K. Attar, D. Bouazza, H. Miloudi, A. Tayeb, A. Boos, A.M. Sastre, H. Demey, Cadmium removal by a low-cost magadiite-based material: characterization and sorption applications, J. Environ. Chem. Eng., 6 (2018) 5351–5360.
  51. J.J. Zhao, Y.Z. Niu, B. Ren, H. Chen, S.X. Zhang, J. Jin, Y. Zhang, Synthesis of Schiff base functionalized superparamagnetic Fe3O4 composites for effective removal of Pb(II) and Cd(II) from aqueous solution, Chem. Eng. J., 347 (2018) 574–584.
  52. A.K. Fard, G. Mckay, Y. Manawi, Z. Malaibari, M.A. Hussien, Outstanding adsorption performance of high aspect ratio and super-hydrophobic carbon nanotubes for oil removal, Chemosphere, 164 (2016) 142–155.
  53. G.R.D. Freitas, M.G.A. Vieira, M.G.C.D. Silva, Batch and fixed bed biosorption of copper by acidified algae waste biomass, Ind. Eng. Chem. Res., 57 (2018) 11767–11777.
  54. A. Ajmal, P.R. Piergioyanni, Effect of mordanting on the adsorption thermodynamics and kinetics of cochineal for wool, Ind. Eng. Chem. Res., 57 (2018) 4462–4469.
  55. C. Wu, X.F. Lou, X.F. Xu, A.M. Huang, M. Zhang, L. Ma, Thermodynamics and kinetics of pretilachlor adsorption on organobentonites for controlled release, ACS Omega, 5 (2020) 4191–4199.
  56. X. Chen, X. Jiang, C.J. Yin, B.L. Zhang, Q.Y. Zhang, Facile fabrication of hierarchical porous ZIF-8 for enhanced adsorption of antibiotics, J. Hazard. Mater., 367 (2019) 194–204.
  57. H.X. Zhu, X.J. Cao, Y.C. He, Q.J. Kong, H. He, J. Wang, Removal of Cu2+ from aqueous solutions by the novel modified bagasse pulp cellulose: kinetics, isotherm and mechanism, Carbohydr. Polym., 129 (2015) 115–126.
  58. Q.B. Kong, B.B. Xie, S. Preis, Y. Hu, H.Z. Wu, C.H. Wei, Adsorption of Cd2+ by an ion-imprinted thiol-functionalized polymer in competition with heavy metal ions and organic acids, RSC Adv., 8 (2018) 8950–8960.