References

  1. J.W. Moore, Inorganic Contaminants of Surface Water: Research and Monitoring Priorities, Springer, New York, 2012.
  2. G.M. Gadd, Metals, minerals and microbes: geomicrobiology and bioremediation, Microbiology, 156 (2010) 609–643.
  3. M. Halim, P. Conte, A. Piccolo, Potential availability of heavy metals to phytoextraction from contaminated soils induced by exogenous humic substances, Chemosphere, 52 (2003) 265–275.
  4. R.A.K. Rao, M. Kashifuddin, Kinetics and isotherm studies of Cd(II) adsorption from aqueous solution utilizing seeds of bottlebrush plant (Callistemon chisholmii), Appl. Water Sci., 4 (2014) 371–383.
  5. M. Husain, Q. Husain, Applications of redox mediators in the treatment of organic pollutants by using oxidoreductive enzymes: a review, Crit. Rev. Env. Sci. Technol., 38 (2007) 1–42.
  6. I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot, D. Fatta-Kassinos, Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: a review, Water Res., 47 (2013) 957–995.
  7. L.C. Davies, C.C. Carias, J.M. Novais, S. Martins-Dias, Phytoremediation of textile effluents containing azo dye by using Phragmites australis in a vertical flow intermittent feeding constructed wetland, Ecol. Eng., 25 (2005) 594–605.
  8. A. Ejraei, M.A. Aroon, A.Z. Saravani, Wastewater treatment using a hybrid system combining adsorption, photocatalytic degradation and membrane filtration processes, J. Water Process Eng., 28 (2019) 45–53.
  9. G. Sanjeev, A. Harshita, T. Manisha, A. Ali, S. Hemam, K. Rajwant, A. Mojtaba, Metal oxides and metal organic frameworks for the photocatalytic degradation: a review, J. Environ. Chem. Eng., 8 (2020) 103726, doi:10.1016/j.jece.2020.103726.
  10. E.A.S. Dimapilis, C.S. Hsu, R.M.O. Mendoza M.C. Lu, Zinc oxide nanoparticles for water disinfection, Sustainable Environ. Res., 28 (2018) 47–56.
  11. D. Wang, X. Li, J. Chen, X. Tao, Enhanced photoelectrocatalytic activity of reduced graphene oxide/TiO2 composite films for dye degradation, Chem. Eng. J., 198–199 (2012) 547–554.
  12. J.G. Mahy, R.G. Tilkin, S. Douven, S.D. Lambert, TiO2 nanocrystallites photocatalysts modified with metallic species: comparison between Cu and Pt doping, Surf. Interfaces, 17 (2019) 100366, doi: 10.1016/j.surfin.2019.100366.
  13. N. Yusoff, N.M. Huang, M.R. Muhamad, S.V. Kumar, H.N. Lim, I. Harrison, Hydrothermal synthesis of CuO/functionalized graphene nanocomposites for dye degradation, Mater. Lett., 93 (2013) 393–396.
  14. J. Ahmad, K. Majid, Enhanced visible light driven photocatalytic activity of CdO–graphene oxide heterostructures for the degradation of organic pollutants, New J. Chem., 42 (2018) 3246–3259.
  15. H. Seema, K. Christian Kemp, V. Chandra, K.S. Kim, Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight, Nanotechnology, 23 (2012) 355705, doi: 10.1088/0957-4484/23/35/355705.
  16. B. Chai, J. Li, Q. Xu, K. Dai, Facile synthesis of reduced graphene oxide/WO3 nanoplates composites with enhanced photocatalytic activity, Mater. Lett., 120 (2014) 177–181.
  17. X. Chen, J. Dai, G. Shi, L. Li, G. Wang, H. Yang, Visible light photocatalytic degradation of dyes by β-Bi2O3/graphene nanocomposites, J. Alloys Compd., 649 (2015) 872–877.
  18. L. Jiade, W. Longfu, Y. Changlin, F. Wen, X. Yu, Z. Wanqin, Z. Lihua, Preparation and characterization of graphene oxide/ Ag2CO3 photocatalyst and its visible light photocatalytic activity, Appl. Surf. Sci., 358 (2015) 168–174.
  19. M.A. Kausor, A.M. Ali, S.S. Gupta, D. Chakrabortty, Synthesis, characterization, and application of graphene-based silver orthophosphate nanocomposite in organic dye degradation, Desal. Water Treat., 140 (2019) 337–346.
  20. K. Morimoto, K. Tamura, N. Iyi, J. Ye, H. Yamada, Adsorption and photodegradation properties of anionic dyes by layered double hydroxides, J. Phys. Chem. Solids, 72 (2011) 1037–1045.
  21. P. Cai, S. Ci, N. Wu, Y. Hong, Z. Wen, Layered structured CoAl/ CdS‐LDHs nanocomposites as visible light photocatalyst, Physica Status Solidi (a), 214 (2017) 1600910, doi: 10.1002/pssa.201600910.
  22. B. Bridier, M.A.G. Hevia, N. López, J. Pérez-Ramírez, Permanent alkene selectivity 55 enhancement in copper-catalyzed propyne hydrogenation by temporary CO supply, J. Catal., 278 (2011) 167–172.
  23. L. Ju, P. Wu, X. Lai, S. Yang, B. Gong, M. Chen, N. Zhu, Synthesis and characterization of fullerene modified ZnAlTi-LDO in the photo-degradation of bisphenol A under simulated visible light irradiation, Environ. Pollut., 228 (2017) 234–244.
  24. C.M. Puscasu, E.M. Seftel, M. Mertens, P. Cool, G. Carja, ZnTi-LDH and the derived mixed oxides as mesoporous nanoarchitectonics with photocatalytic capabilities, J. Inorg. Organomet. Polym., 25 (2015) 259–266.
  25. Y. Meng, S.J. Xia, J.L. Xue, S.L. Ni, Z.M. Ni, Synthesis, and photocatalytic degradation performance for rhodamine B of Zn-Cr-Cu composite metal oxides derived from layered double hydroxides, Chin. J. Inorg. Chem., 34 (2018) 1632.
  26. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, M. Sadiq, F.Z. Mahjoubi, S. Qourzal, N. Barka, Photocatalytic degradation of caffeine as a model pharmaceutical pollutant on Mg doped ZnO-Al2O3 heterostructure, Environ. Nanotechnol. Monit. Manage., 10 (2018) 63–72.
  27. D.Y. Wang, F.R. Costa, A. Vyalikh, A. Leuteritz, U. Scheler, D. Jehnichen, U. Wagenknecht, L. Häussler, G. Heinrich, One-step synthesis of organic LDH and its comparison with regeneration and anion exchange method, Chem. Mater., 21 (2009) 4490–4497.
  28. A. Elhalil, R. Elmoubarki, M. Farnane, A. Machrouhi, F.Z. Mahjoubi, M. Sadiq, S. Qourzal, M. Abdennouri, N. Barka, Novel Ag-ZnO-La2O2CO3 photocatalysts derived from the layered double hydroxide structure with excellent photocatalytic performance for the degradation of pharmaceutical compounds, J. Sci.: Adv. Mater. Devices, 4 (2019) 34–46.
  29. D.G. Evans, X. Duan, Preparation of layered double hydroxides and their applications as additives in polymers, as precursors to magnetic materials and in biology and medicine, Chem. Commun., 5 (2006) 485–496.
  30. W. Li, A. Liu, H. Tian, D. Wang, Controlled release of nitrate and molybdate intercalated in Zn-Al-layered double hydroxide nanocontainers towards marine anticorrosion applications, Colloid Interface Sci. Commun., 24 (2018) 18–23.
  31. D.A. Islam, K. Barman, S. Jasimuddin, H. Acharya, Synthesis of ultrasmall and monodisperse sulfur nanoparticles intercalated CoAl layered double hydroxide and their electrocatalytic water oxidation reaction at neutral pH, Nanoscale, 11 (2019) 7560–7566.
  32. B.A. Baig, A. Elçi, A.N. Siyal, S. Dehrajd, Q.K. Panhwar, A. Ahmed, A.R. Bhattia, F. Ali, M.Y. Khuhawar, Facile synthesis and characterization of β-Cd(OH)2 nanostructures for adsorptive removal of Cr(VI) ions from wastewater: a statistical approach for multivariate sorption optimization, Desal. Water Treat., 218 (2021) 270–280.
  33. J.T. Kloprogge, D. Wharton, L. Hickey, R.L. Frost, Infrared and Raman study of interlayer anions CO32–, NO3, SO42– and ClO4 in Mg/Alhydrotalcite, Am. Mineral., 87 (2002) 623–629.
  34. J. Yang, C. Yu, X. Fan, Z. Ling, J. Qiu, Y. Gogotsi, Facile fabrication of MWCNT-doped NiCoAl-layered double hydroxide nanosheets with enhanced electrochemical performances, J. Mater. Chem. A, 1 (2013) 1963–1968.
  35. F.Z. Mahjoubi, A. Khalidi, M. Abdennouri, N. Barka, Zn–Al layered double hydroxides intercalated with carbonate, nitrate, chloride, and sulfate ions: synthesis, characterization and dye removal properties, J. Taibah Univ. Sci., 11 (2017) 90–100.
  36. X. Tao, K. Zheng, L. Huang, Plasma induced liquid-phase synthesis of Ce/Mo metal oxides as photocatalysts, Chem. Phys. Lett., 780 (2021) 138903, doi: 10.1016/j.cplett.2021.138903.
  37. M. Shao, J. Han, M. Wei, D.G. Evans, X. Duan, the synthesis of hierarchical Zn–Ti layered double hydroxide for efficient visible-light photocatalysis, Chem. Eng. J., 168 (2011) 519–524.
  38. W. Xiaorong. W. Pingxiao, H. Zhujian, Z. Nengwu, W. Jinhua, L. Ping, D. Zhi, Solar photocatalytic degradation of methylene blue by mixed metal oxide catalysts derived from ZnAlTi layered double hydroxides, Appl. Clay Sci., 95 (2014) 95–103.
  39. N. Baliarsingh, K.M. Parida, G.C. Pradhan, Effects of Co, Ni, Cu and Zn on photophysical and photocatalytic properties of carbonate intercalated MII/Cr LDHs for enhanced photodegradation of methyl orange, Ind. Eng. Chem. Res., 53 (2014) 3834–3841.
  40. Y. Zhou, W. Hu, J. Yu, F. Jiao, Effective photocatalytic degradation of methylene blue by Cu2O/MgAl layered double hydroxides, React. Kinet. Mech. Catal., 115 (2015) 581–596.
  41. P. Roy Chowdhury, K.G. Bhattacharyya, Retracted article: Ni/Ti layered double hydroxide: synthesis, characterization, and application as a photocatalyst for visible light degradation of aqueous methylene blue, Dalton Trans., 44 (2015) 6809–6824.
  42. M. Dinari, M.M. Momeni, Z. Bozorgmehr, S. Karimi, Bismuthcontaining layered double hydroxide as a novel efficient photocatalyst for degradation of methylene blue under visible light, J. Iran. Chem. Soc., 14 (2017) 695–701.
  43. G. Starukh, Photocatalytically enhanced cationic dye removal with Zn-Al layered double hydroxides, Nanoscale Res. Lett., 12 (2017) 391, doi: 10.1186/s11671-017-2173-y.
  44. G. Rathee, A. Awasthi, D. Sood, R. Tomar, V. Tomar, R. Chandra, A new biocompatible ternary layered double hydroxide adsorbent for ultrafast removal of anionic organic dyes, Sci. Rep., 9 (2019) 16225, doi:10.1038/s41598-019-52849-4.
  45. Z. Shi, Y. Wang, S. Sun, C. Zhang, H. Wang, Removal of methylene blue from aqueous solution using Mg-Fe, Zn-Fe, Mn-Fe layered double hydroxide, Water Sci. Technol., 81 (2020) 2522–2532.