References

  1. E. Isarain-Chávez, M. Dolors Baró, E. Rossinyol, U. Morales-Ortiz, J. Sort, E. Brillas, E. Pellicer, Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes, Electrochim. Acta, 244 (2017) 199–208.
  2. P. Li, Z. Liu, X. Wang, Y. Guo, L. Wang, Enhanced decolorization of methyl orange in aqueous solution using iron–carbon microelectrolysis activation of sodium persulfate, Chemosphere, 180 (2017) 100–107.
  3. A. Ola, O.A. Shabaan, H.S. Jahin, G.G. Mohamed, Removal of anionic and cationic dyes from wastewater by adsorption using multiwall carbon nanotubes, Arabian J. Chem., 13 (2020) 4797–4810.
  4. Y. Sha, I. Mathew, Q. Cui, M. Clay, F. Gao, X.J. Zhang, Z. Gu, Rapid degradation of azo dye methyl orange using hollow cobalt nanoparticles, Chemosphere, 144 (2016) 1530–1535.
  5. A. Alinsafi, M. Khemis, M.N. Pons, J.P. Leclerc, A. Yaacoubi, A. Benhammou, A. Nejmeddine, Electro-coagulation of reactive textile dyes and textile wastewater, Chem. Eng. Process., 44 (2005) 461–470.
  6. G. Xin, P.G. Ren, J. Wang, F. Ren, Z. Dai, Y.J. Jin, Fabrication of visible-light responsive TiO2 photocatalyst with an ultrathin carbon layer to efficiently degrade organic pollutants, Appl. Surf. Sci., 532 (2020) 1474–1482.
  7. E. Pargoletti, V. Pifferi, L. Falciola, G. Facchinetti, A.R. Depaolini, E. Davoli, G. Cappelletti, A detailed investigation of MnO2 nanorods to be grown onto activated carbon. High efficiency towards aqueous methyl orange adsorption/degradation, Appl. Surf. Sci., 472 (2019) 118–126.
  8. C.H. Nguyen, C.C. Fu, R.S. Juang, Degradation of methylene blue and methyl orange by palladium-doped TiO2 photocatalysis for water reuse: efficiency and degradation pathways, J. Cleaner Prod., 202 (2018) 413–427.
  9. M. Saghian, S. Dehghanpour, M. Sharbatdaran, Unique and efficient adsorbents for highly selective and reverse adsorption and separation of dyes via the introduction of SO3H functional groups into a metal–organic framework, RSC Adv., 10 (2020) 9369–9377.
  10. A. Tonni, T.A. Kurniawan, Z. Mengting, D. Fu, S.K. Yeap, M.H.D. Othman, R. Avtar, T. Ouyang, Functionalizing TiO2 with graphene oxide for enhancing photocatalytic degradation of methylene blue (MB) in contaminated wastewater, J. Environ. Manage., 270 (2020) 110871, doi: 10.1016/j.jenvman.2020.110871.
  11. V. Jayaraman, B. Palanivel, C. Ayappan, M. Chellamuthu, A. Mani, CdZnS solid solution supported Ce2Sn2O7 pyrochlore photocatalyst that proves to be an efficient candidate towards the removal of organic pollutants, Sep. Purif. Technol., 224 (2019) 405–420.
  12. D. Chen, Y. Cheng, N. Zhou, P. Chen, Y. Wang, K. Li, R. Ruan, Photocatalytic degradation of organic pollutants using TiO2-based photocatalysts: a review, J. Cleaner Prod., 268 (2020) 121–129.
  13. P. Niu, G. Wu, P. Chen, H. Zheng, Q. Cao, H. Jiang, Optimization of boron doped TiO2 as an efficient visible lightdriven photocatalyst for organic dye degradation with high reusability, Front. Chem., 8 (2020) 172–178.
  14. A. Tsiampalis, Z. Frontistis, V. Binas, G. Kiriakidis, D. Mantzavinos, Degradation of sulfamethoxazole using
    iron-doped titanium and simulated solar radiation, Catalysts, 9 (2019) 612–621.
  15. L. Ruixiang, T. Li, Q. Zhou, Impact of titanium dioxide (TiO2) modification on its application to pollution treatment—a review, Catalysts, 10 (2020) 804–810.
  16. C. Machut, N. Kania, B. Léger, F. Wyrwalski, S. Noël, A. Addad, A. Ponchel, Fast microwave synthesis of gold-doped TiO2 assisted by modified cyclodextrins for photocatalytic degradation of dye and hydrogen production, Catalysts, 10 (2020) 801–812.
  17. Y. Wang, Solar photocatalytic degradation of eight commercial dyes in TiO2 suspension, Water Res., 34 (2000) 990–994.
  18. M. Vautier, C. Guillard, J.M. Herrmann, Photocatalytic degradation of dyes in water: case study of indigo and of indigo carmine, J. Catal., 201 (2001) 46–59.
  19. M. Tanya, T.M. Breault, B.M. Bartlett, Lowering the band gap of anatase-structured TiO2 by coalloying with Nb and N: electronic structure and photocatalytic degradation of methylene blue dye, J. Phys. Chem., 116 (2012) 5986–5994.
  20. S. Debnath, N. Ballav, H. Nyoni, A. Maity, K. Pillay, Optimization and mechanism elucidation of the catalytic photo-degradation of the dyes Eosin Yellow (EY) and Naphthol blue black (NBB) by a polyaniline-coated titanium dioxide nanocomposite, Appl. Catal., B, 163 (2015) 330–342.
  21. F. Qiu, W. Li, F. Wang, H. Li, X. Liu, J. Sun, In-situ synthesis of novel Z-scheme SnS2/BiOBr photocatalysts with superior photocatalytic efficiency under visible light, J. Colloid Interface Sci., 493 (2017) 1–9.
  22. F. Liu, J. Cao, Z. Yang, W. Xiong, Z. Xu, P. Song, X. Zhong, Heterogeneous activation of peroxymonosulfate by cobaltdoped MIL-53 (Al) for efficient tetracycline degradation in water: coexistence of radical and non-radical reactions, J. Colloid Interface Sci., 581 (2021) 195–204.
  23. Y. Kurokawa, D.T. Nguyen, K. Taguchi, Nickel-doped TiO2 multilayer thin film for enhancement of photocatalytic activity, Int. J. Mater. Sci. Eng., 7 (2019) 10–19.
  24. S. Kanan, M.A. Moyet, R.B. Arthur, H.H. Patterson, Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies, Catal. Rev., 62 (2020) 1–65.
  25. K. Hu, R. Li, C. Ye, A. Wang, W. Wei, D. Hu, K. Yan, Facile synthesis of Z-scheme composite of TiO2 nanorod/g-C3N4 nanosheet efficient for photocatalytic degradation of ciprofloxacin, J. Cleaner Prod., 253 (2020) 155–163.
  26. H.A. Kiwaan, T.M. Atwee, E.A. Azab, A.A. El-Bindary, Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide, J. Mol. Struct., 4 (2020) 127–134.
  27. T.A. Saleh, V.K. Gupta, Photo-catalyzed degradation of hazardous dye methyl orange by use of a composite catalyst consisting of multi-walled carbon nanotubes and titanium dioxide, J. Colloid Interface Sci., 371 (202) 101–106.
  28. D. Dodoo-Arhin, F.P. Buabeng, J.M. Mwabora, P.N. Amaniampong, H. Agbe, E. Nyankson, N.Y. Asiedu, The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants, Heliyon, 4 (2018) 681–689.
  29. P. Singla, M. Sharma, O.P. Pandey, K. Singh, Photocatalytic degradation of azo dyes using Zn-doped and un-doped TiO2 nanoparticles, Appl. Phys. A, 116 (2018) 371–378.
  30. V.K. Gupta, R. Jain, A. Mittal, M. Mathur, S. Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst, J. Colloid Interface Sci., 309 (2007) 464–469.
  31. S.K. Kuriechen, S. Murugesan, Carbon-doped titanium dioxide nanoparticles mediated photocatalytic degradation of azo dyes under visible light, Water Air Soil Pollut., 224 (2013) 1–8.
  32. L.A. Chanu, W.J. Singh, K.J. Singh, K.N. Devi, Effect of operational parameters on the photocatalytic degradation of Methylene blue dye solution using manganese doped ZnO nanoparticles, Results Phys., 12 (2019) 1230–1237.
  33. I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea, UV–Vis photocatalytic degradation of nitrobenzene from water using heavy metal-doped titanium, Ind. Eng. Chem. J., 21 (2015) 677–682.
  34. N. Ruchi, J. Bamne, N. Singh, P.K. Sharma, P. Singh, A. Umar, F.Z. Haque, Synthesis of titania/silica nanocomposite for enhanced photodegradation of methylene blue and methyl orange dyes under UV and mercury lights, ES Mater. Manuf., 16 (2022) 78–88.
  35. T.H. Nguyen, A.T. Vu, V.H. Dang, J.C.-S. Wu, M.T. Le, Photocatalytic degradation of phenol and methyl orange with titania-based photocatalysts synthesized by various methods in comparison with ZnO–graphene oxide composite, Top. Catal., 63 (2020) 1215–1226.
  36. G.D. Okcu, T. Tunacan, E. Dikmen, Photocatalytic degradation of yellow 2G dye using titanium dioxide/ultraviolet A light through a Box–Behnken experimental design: optimization and kinetic study, J. Environ. Sci. Health. Part A Toxic/Hazard. Subst. Environ. Eng., 54 (2019) 136–145.
  37. M. Sboui, H. Lachheb, M. Swaminathan, J.H. Pan, Low-temperature deposition and crystallization of RuO2/TiO2 on cotton fabric for efficient solar photocatalytic degradation of o-toluidine, Cellulose, 29 (2022) 1189–1204.
  38. A. Bathla, R.A. Rather, T. Poonia, B. Pal, Morphology dependent photocatalytic activity of CuO/CuO–TiO2 nanocatalyst for degradation of methyl orange under sunlight, J. Nanosci. Nanotechnol., 20 (2020) 3123–3130.
  39. R.K. Sithole, L.F. Machogo, M.J. Moloto, S.S. Gqoba, K.P. Mubiayi, J. Van Wyk, N. Moloto, One-step synthesis of Cu3N, Cu2S and Cu9S5 and photocatalytic degradation of methyl orange and methylene blue, J. Photochem. Photobiol., A, 397 (2020) 112577, doi: 10.1016/j.jphotochem.2020.112577.
  40. B. Kaushik, S. Yadav, P. Rana, K. Solanki, D. Rawat, R.K. Sharma, Precisely engineered type II ZnO-CuS based heterostructure: a visible light driven photocatalyst for efficient mineralization of organic dyes, Appl. Surf. Sci., 590 (2022) 1530–1553.
  41. E.K. Tetteh, E.O. Ezugbe, D.A. Sackey, E.K. Armah, S. Rathilal, Response surface methodology: photocatalytic degradation kinetics of basic blue 41 dye using activated carbon with TiO2, Molecules, 26 (2021) 1068–1081.
  42. A. Murugesan, M. Loganathan, P. Senthil Kumar, D.-V.N. Voc, Cobalt and nickel oxides supported activated carbon as an effective photocatalysts for the degradation Methylene Blue dye from aquatic environment, Sustainable Chem. Pharm., 21 (2021) 100406, doi: 10.1016/j.scp.2021.100406.
  43. A. Miri, F. Mahabbati, A. Najafidoust, M.J. Miri, M. Sarani, Nickel oxide nanoparticles: biosynthesized, characterization and photocatalytic application in degradation of methylene blue dye, Inorg. Nano-Metal Chem., 52 (2022) 122–131.
  44. G.V. Sree, P. Nagaraaj, K. Kalanidhi, C.A. Aswathy, P. Rajasekaran, Calcium oxide a sustainable photocatalyst derived from eggshell for efficient photo-degradation of organic pollutants, J. Cleaner Prod., 270 (2020) 1222–1294.
  45. M.F. Hanafi, N. Sapawe, An overview of recent developments on semiconductor catalyst synthesis and modification used in photocatalytic reaction, Mater. Today:. Proc., 31 (2020) A151–A157.
  46. M. Hasanpour, S. Motahari, D. Jing, M. Hatami, Numerical modeling for the photocatalytic degradation of methyl orange from aqueous solution using cellulose/zinc oxide hybrid aerogel: comparison with experimental data, Top. Catal., (2021) 1–14, doi: 10.1007/s11244-021-01451-y.
  47. M. Hasanpour, S. Motahari, D. Jing, M. Hatami, Investigation of the different morphologies of zinc oxide (ZnO) in cellulose/ZnO hybrid aerogel on the photocatalytic degradation efficiency of methyl orange, Top. Catal., (2021) 1–14, doi: 10.1007/ s11244-021-01476-3.
  48. N.K. Jangid, S. Jadoun, A. Yadav, M. Srivastava, N. Kaur, Polyaniline-TiO2-based photocatalysts for dyes degradation, Polym. Bull., 78 (2021) 4743–4777.
  49. N.M. Mahmoodi, J. Abdi, M. Taghizadeh, B. Hayati, A.A. Shekarchi, M. Vossoughi, Activated carbon/metal-organic framework nanocomposite: preparation and photocatalytic dye degradation mathematical modeling from wastewater by least squares support vector machine, J. Environ. Manage., 233 (2019) 660–672.