References
- O. Falyouna, I. Maamoun, K. Bensaida, A. Tahara, Y. Sugihara,
O. Eljamal, Encapsulation of iron nanoparticles with magnesium
hydroxide shell for remarkable removal of ciprofloxacin
from contaminated water, J. Colloid Interface Sci., 605 (2022)
813–827.
- R. Eljamal, I. Kahraman, O. Eljamal, I.P. Thompson,
I. Maamoun, G. Yilmaz, Impact of nzvi on the formation of
aerobic granules, bacterial growth and nutrient removal using
aerobic sequencing batch reactor, Environ. Technol. Innovation,
19 (2020) 100911, doi: 10.1016/j.eti.2020.100911.
- G. Vilardi, N. Verdone, Production of metallic iron nanoparticles
in a baffled stirred tank reactor: optimization via
computational fluid dynamics simulation, Particuology,
52 (2020) 83–96.
- G. Vilardi, M. Stoller, L. Di Palma, K. Boodhoo, N. Verdone,
Metallic iron nanoparticles intensified production by spinning
disk reactor: optimization and fluid dynamics modelling,
Chem. Eng. Process. Process Intensif., 146 (2019) 107683,
doi: 10.1016/j.cep.2019.107683.
- G. Vilardi, N. Verdone, R. Bubbico, Combined production of
metallic-iron nanoparticles: exergy and energy analysis of two
alternative processes using hydrazine and nabh4 as reducing
agents, J. Taiwan Inst. Chem. Eng., 118 (2021) 97–111.
- S. Takami, O. Eljamal, A.M.E. Khalil, R. Eljamal, N. Matsunaga,
Development of continuous system based on nanoscale zero
valent iron particles for phosphorus removal, J. JSCE, 7 (2019)
30–42, doi:10.2208/journalofjsce.7.1_30.
- R. Mokete, O. Eljamal, Y. Sugihara, Exploration of the reactivity
of nanoscale zero-valent iron (NZVI) associated nanoparticles
in diverse experimental conditions, Chem. Eng. Process. Process
Intensif., 150 (2020) 107879, doi:10.1016/j.cep.2020.107879.
- T. Shubair, O. Eljamal, A. Tahara, Y. Sugihara, N. Matsunaga,
Preparation of new magnetic zeolite nanocomposites for
removal of strontium from polluted waters, J. Mol. Liq.,
288 (2019) 111026, doi:10.1016/j.molliq.2019.111026.
- I. Maamoun, O. Eljamal, O. Falyouna, R. Eljamal, Y. Sugihara,
Stimulating effect of magnesium hydroxide on aqueous
characteristics of iron nanocomposites, Water Sci. Technol.,
80 (2019) 1996–2002.
- F. He, Z. Li, S. Shi, W. Xu, H. Sheng, Y. Gu, Y. Jiang, B. Xi,
Dechlorination of excess trichloroethene by bimetallic and
sulfidated nanoscale zero-valent iron, Environ. Sci. Technol.,
52 (2018) 8627–8637.
- Y. Han, W. Yan, Reductive dechlorination of trichloroethene
by zero-valent iron nanoparticles: reactivity enhancement
through sulfidation treatment, Environ. Sci. Technol., 50 (2016)
12992–13001.
- L. Zhou, T.L. Thanh, J. Gong, J.-H. Kim, E.-J. Kim, Y.-S. Chang,
Carboxymethyl cellulose coating decreases toxicity and
oxidizing capacity of nanoscale zero-valent iron, Chemosphere,
104 (2014) 155–161.
- M.A. Asad, U.T. Khan, M.M. Krol, Subsurface transport of
carboxymethyl cellulose (CMC)-stabilized nanoscale zero
valent iron (nZVI): numerical and statistical analysis, J. Contam.
Hydrol., 243 (2021) 103870, doi:10.1016/j.jconhyd.2021.103870.
- W. Liu, J. Bai, Z. Chi, L. Ren, J. Dong, An in-situ reactive zone
with xanthan gum modified reduced graphene oxide supported
nanoscale zero-valent iron (XG-nZVI/rGO) for remediation
of Cr(VI)-polluted aquifer: dynamic evolutions of Cr(VI) and
environmental variables, J. Environ. Chem. Eng., 9 (2021)
104987, doi:10.1016/j.jece.2020.104987.
- A.K. Saha, A. Sinha, S. Pasupuleti, Modification, characterization
and investigations of key factors controlling the transport
of modified nano zero-valent iron (nZVI) in porous media,
Environ. Technol., 40 (2019) 1543–1556.
- H. Ohshima, Theory of Colloid and Interfacial Electric
Phenomena, Elsevier, 2006.
- H. Ohshima, Electrokinetic phenomena of soft particles, Curr.
Opin. Colloid Interface Sci., 18 (2013) 73–82.
- S.K. Maurya, S. Sarkar, H.K. Mondal, H. Ohshima,
P.P. Gopmandal, Electrophoresis of soft particles with
hydrophobic inner core grafted with pH-regulated and highly
charged polyelectrolyte layer, Electrophoresis, 43 (2022)
757–766.
- H. Ohshima, Electrostatic interaction of soft particles, Adv.
Colloid Interface Sci., 226 (2015) 2–16.
- H. Ohshima, Electrophoresis of soft particles, Adv. Colloid
Interface Sci., 62 (1995) 189–235.
- Q. Yu, J. Guo, Y. Muhammad, Q. Li, Z. Lu, J. Yun, Y. Liang,
Mechanisms of enhanced hexavalent chromium removal from
groundwater by sodium carboxymethyl cellulose stabilized
zero-valent iron nanoparticles, J. Environ. Manage., 276 (2020)
111245, doi: 10.1016/j.jenvman.2020.111245.
- T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry, Aggregation
and sedimentation of aqueous nanoscale zero-valent iron
dispersions, Environ. Sci. Technol., 41 (2007) 284–290.
- D. Fan, G.O. Johnson, P.G. Tratnyek, R.L. Johnson, Sulfidation
of nano zero-valent iron (nZVI) for improved selectivity during
in-situ chemical reduction (ISCR), Environ. Sci. Technol.,
50 (2016) 9558–9565.
- Y. Li, Y. Zhang, Q. Jing, Y. Lin, The influence of Pluronic F-127
modification on nano zero-valent iron (nZVI): sedimentation
and reactivity with 2,4-dichlorophenol in water using response
surface methodology, Catalysts, 10 (2020) 412, doi: 10.3390/catal10040412.
- Y. Liu, Y.X. Zhang, S.S. Lan, S. Hou, Migration experiment and
numerical simulation of modified nanoscale zero-valent iron
(nZVI) in porous media, J. Hydrol., 579 (2019) 124193.
- S.R.C. Rajajayavel, S. Ghoshal, Enhanced reductive
dechlorination of trichloroethylene by sulfidated nanoscale
zero-valent iron, Water Res., 78 (2015) 144–153.
- K.L. Chen, M. Elimelech, Influence of humic acid on the
aggregation kinetics of fullerene (C60) nanoparticles in
monovalent and divalent electrolyte solutions, J. Colloid
Interface Sci., 309 (2007) 126–134.
- K.L. Chen, S.E. Mylon, M. Elimelech, Aggregation kinetics of
alginate-coated hematite nanoparticles in monovalent and
divalent electrolytes, Environ. Sci. Technol., 40 (2006) 1516–1523.
- K.L. Chen, M. Elimelech, Aggregation and deposition
kinetics of fullerene (C60) nanoparticles, Langmuir, 22 (2006)
10994–11001.
- H. Ohshima, Chapter 14 – General Expressions for the Force
and Potential Energy of the Double Layer Interaction Between
Two Charged Colloidal Particles and Analytic Approximations
for the Interaction Between Two Parallel Plates, H. Ohshima,
Ed., Theory of Colloid and Interfacial Electric Phenomena,
Interface Science and Technology, Vol. 12, Elsevier, 2006,
pp. 315–363.
- H. Ohshima, M. Nakamura, T. Kondo, Electrophoretic mobility
of colloidal particles coated with a layer of adsorbed polymers,
Colloid Polym. Sci., 270 (1992) 873–877.
- M.V. Smoluchowski, Vers versuch einer mathematischen
theorie der koagulationskinetik kolloider losungen,
Z. Phys.
Chem., 92 (1917) 129–168.
- J. Škvarla, J. Škvarla, A unified analysis of the coagulation
behaviour of silica hydrosols—when the colloid and polymer
science meet, Colloid Polym. Sci., 298 (2020) 123–138.
- H. Ohshima, M. Nakamura, T. Kondo, Electrophoretic mobility
of colloidal particles coated with a layer of adsorbed polymers,
Colloid Polym. Sci., 270 (1992) 873–877.
- J. Gregory, Approximate expressions for retarded van der waals
interaction, J. Colloid Interface Sci., 83 (1981) 138–145.
- S.-W. Bian, I.A. Mudunkotuwa, T. Rupasinghe, V.H. Grassian,
Aggregation and dissolution of 4 nm ZnO nanoparticles in
aqueous environments: influence of pH, ionic strength, size,
and adsorption of humic acid, Langmuir, 27 (2011) 6059–6068.
- K.A. Huynh, K.L. Chen, Aggregation kinetics of citrate and
polyvinylpyrrolidone coated silver nanoparticles in monovalent
and divalent electrolyte solutions, Environ. Sci. Technol.,
45 (2011) 5564–5571.
- M. Noh, T. Kim, H. Lee, C.-K. Kim, S.-W. Joo, K. Lee, Fluorescence
quenching caused by aggregation
of water-soluble CdSe
quantum dots, Colloids Surf., A, 359 (2010) 39–44.
- H. Ohshima, Effective surface potential and double-layer
interaction of colloidal particles, J. Colloid Interface Sci.,
174 (1995) 45–52.
- L. Wu, L. Liu, B. Gao, R. Muñoz-Carpena, M. Zhang, H. Chen,
Z. Zhou, H. Wang, Aggregation kinetics of graphene oxides in
aqueous solutions: experiments, mechanisms, and modeling,
Langmuir, 29 (2013) 15174–15181.
- R. Bhardwaj, X. Fang, P. Somasundaran, D. Attinger, Selfassembly
of colloidal particles from evaporating droplets: role
of DLVO interactions and proposition of a phase diagram,
Langmuir, 26 (2010) 7833–7842.
- L. Feriancikova, S. Xu, Deposition and remobilization of
graphene oxide within saturated sand packs, J. Hazard. Mater.,
235 (2012) 194–200.
- K. Butter, P.H.H. Bomans, P.M. Frederik, G.J. Vroege,
A.P. Philipse, Direct observation of dipolar chains in iron
ferrofluids by cryogenic electron microscopy, Nat. Mater.,
2 (2003) 88–91.
- H. Ohshima, Chapter 16 – Double Layer Interaction Between
Soft Particles, H. Ohshima, Ed., Theory of Colloid and Interfacial
Electric Phenomena, Interface Science and Technology, Vol. 12,
Elsevier, 2006, pp. 390–408.
- G. Fritz, V. Schädler, N. Willenbacher, N.J. Wagner, Electrosteric
stabilization of colloidal dispersions, Langmuir, 18 (2002)
6381–6390.
- J.L. Ortega-Vinuesa, A. Martı́n-Rodrı́guez, R. Hidalgo-Álvarez,
Colloidal stability of polymer colloids with different interfacial
properties: mechanisms, J. Colloid Interface Sci., 184 (1996)
259–267.
- E. Piacenza, A. Presentato, R.J. Turner, Stability of biogenic
metal(loid) nanomaterials related to the colloidal stabilization
theory of chemical nanostructures, Crit. Rev. Biotechnol.,
38 (2018) 1137–1156.