References

  1. J. Wang, L. Svoboda, Z. Němečková, M. Sgarzi, J. Henych, N. Licciardello, G. Cuniberti, Enhanced visible-light photodegradation of fluoroquinolone-based antibiotics and E. coli growth inhibition using Ag–TiO2 nanoparticles, RSC Adv., 11 (2021) 13980–13991.
  2. F. Moosavi, C. Cheng, T.T. Gheinani, M. Traore, A. Kanaev, M. Nikravech, Photocatalytic destruction of amoxicillin in a pilot sunlight reactor with supported titania nano-photocatalyst, Chem. Eng. Trans., 73 (2019) 175–180.
  3. S. Saeid, P. Tolvanen, N. Kumar, K. Eränen, J. Peltonen, M. Peurla, J.-P. Mikkola, A. Franz, T. Salmi, Advanced oxidation process for the removal of ibuprofen from aqueous solution: a non-catalytic and catalytic ozonation study in a semi-batch reactor, Appl. Catal., B, 230 (2018) 77–90.
  4. S.J. Olusegun, G. Larrea, M. Osial, K. Jackowska, P. Krysinski, Photocatalytic degradation of antibiotics by superparamagnetic iron oxide nanoparticles. Tetracycline case, Catalysts, 11 (2021) 1243, doi:10.3390/catal11101243.
  5. E.M. Cuerda‐Correa, M.F. Alexandre‐Franco, C. Fernández‐González, Advanced oxidation processes for the removal of antibiotics from water. An overview, Water, 12 (2020) 102, doi: 10.3390/w12010102.
  6. N.A. Mohammed, A.I. Alwared, M.S. Salman, Photocatalytic degradation of reactive yellow dye in wastewater using H2O2/TiO2/UV technique, Iraqi J. Chem. Petrol. Eng., 21 (2020) 15–21.
  7. B.A. Marinho, L. Suhadolnik, B. Likozar, M. Huš, Z. Marinko, M. Čeh, Photocatalytic, electrocatalytic and photoelectrocatalytic degradation of pharmaceuticals in aqueous media: analytical methods, mechanisms, simulations, catalysts and reactors, J. Cleaner Prod., 343 (2022) 131061, doi: 10.1016/j.jclepro.2022.131061.
  8. H.A. Patehkhor, M. Fattahi, M. Khosravi-Nikou, Synthesis and characterization of ternary chitosan–TiO2–ZnO over graphene for photocatalytic degradation of tetracycline from pharmaceutical wastewater, Sci. Rep., 11 (2021) 24177, doi: 10.1038/s41598-021-03492-5.
  9. H. Mahmoodi, M. Fattahi, M. Motevassel, Graphene oxide–chitosan hydrogel for adsorptive removal of diclofenac from aqueous solution: preparation, characterization, kinetic and thermodynamic modelling, RSC Adv., 11 (2021) 36289–36304.
  10. A. Garmroudi, M. Kheirollahi, S.A. Mousavi, M. Fattahi, E.H. Mahvelati, Effects of graphene oxide/TiO2 nanocomposite, graphene oxide nanosheets and Cedr extraction solution on IFT reduction and ultimate oil recovery from a carbonate rock, Petroleum, (2022), doi: 10.1016/j.petlm.2020.10.002 (in Press).
  11. R.D.H. Abdul Jalill, R.S. Nuaman, A.N. Abd, Biological synthesis of titanium dioxide nanoparticles by Curcuma longa plant extract and study its biological properties, World Scientific News, 49 (2016) 204–222.
  12. P. Kantheti, P. Alapati, Green synthesis of TiO2 nanoparticles using Ocimum basilicum extract and its characterization, Int. J. Chem. Stud., 6 (2018) 670–674.
  13. T.B. Alobaidi, A.I. Alwared, Biosynthetic of titanium dioxide nanoparticles using Zizyphus spina-christi leaves extract: properties, J. Ecol. Eng., 23 (2022) 315–324.
  14. T. Pushpamalini, M. Keerthana, R. Sangavi, A. Nagaraj, P. Kamaraj, Comparative analysis of green synthesis of TiO2 nanoparticles using four different leaf extract, Mater. Today: Proc., 40 (2021) S180–S184.
  15. V. Patidar, P. Jain, Green synthesis of TiO2 nanoparticle using Moringa oleifera leaf extract, Int. Res. J. Eng. Technol., 4 (2017) 470–473.
  16. R.K. Ganapathi, C.H. Ashok, R.K. Venkateswara, C.H. Chakra, P. Tambur, Green synthesis of TiO2 nanoparticles using Aloe vera extract, J. Res. Phys. Sci. (IJARPS), 2 (2015) 28–34.
  17. R. Sankar, K. Rizwana, K.S. Shivashangari, V. Ravikumar, Ultrarapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles, Appl. Nanosci., 5 (2015) 731–736.
  18. K. Velayutham, A.A. Rahuman, G. Rajakumar, T. Santhoshkumar, S. Marimuthu, C. Jayaseelan, A. Bagavan,
    A.V. Kirthi, C. Kamaraj, A.A. Zahir, G. Elango, Evaluation of Catharanthus roseus leaf extract-mediated biosynthesis of titanium dioxide nanoparticles against Hippobosca maculata and Bovicola ovis, J. Parasitol. Res., 111 (2012) 2329–2337.
  19. M. Sundrarajan, S. Gowri, Green synthesis of titanium dioxide nanoparticles by Nyctanthes Arbor-Tristis leaves extract, Chalcogenide Lett., 8 (2011) 447–451.
  20. S. Ye, Y. Chen, X. Yao, J. Zhang, Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: a review, Chemosphere, 273 (2021) 128503, doi: 10.1016/j.chemosphere.2020.128503.
  21. D. Balarak, F.K. Mostafapour, A. Joghtaei, Thermodynamic analysis for adsorption of amoxicillin onto magnetic carbon nanotubes, J. Pharm. Res. Int., 16 (2017) 1–11, doi: 10.9734/BJPR/2017/33212.
  22. M. Zaier, L. Vidal, S. Hajjar-Garreau, L. Balan, Generating highly reflective and conductive metal layers through a lightassisted synthesis and assembling of silver nanoparticles in a polymer matrix. Sci. Rep., 7 (2017) 12410, doi:10.1038/s41598-017-12617-8.
  23. E. Bazrafshan, T.J. Al-Musawi, M.F. Silva, A.H. Panahi, M. Havangi, F.K. Mostafapur, Photocatalytic degradation of catechol using ZnO nanoparticles as catalyst: optimizing the experimental parameters using the Box–Behnken statistical methodology and kinetic studies, Microchem. J., 147 (2019) 643–653.
  24. A.A. Mohammed, T.J. Al-Musawi, S.L. Kareem, M. Zarrabi, A.M. Al-Ma’abreh, Simultaneous adsorption of tetracycline, amoxicillin, and ciprofloxacin by pistachio shell powder coated with zinc oxide nanoparticles, Arabian J. Chem., 13 (2020) 4629–4643.
  25. A. Chatterjee, D. Nishanthini, N. Sandhiya, J. Abraham, Biosynthesis of titanium dioxide nanoparticles using Vigna radiate, Asian J. Pharm. Clin. Res., 9 (2016) 85–88.
  26. M. Malakootian, A. Nasiri, M.A. Gharaghani, Photocatalytic degradation of ciprofloxacin antibiotic by TiO2 nanoparticles immobilized on a glass plate, Chem. Eng. Commun., 207 (2020) 56–72.
  27. F.I. Al Qarni, N.A. Alomair, H.H. Mohamed, Environmentfriendly nanoporous titanium dioxide with enhanced photocatalytic activity, Catalysts, 9 (2019) 799, doi: 10.3390/catal9100799.
  28. X. Wei, G. Zhu, J. Fang, J. Chen, Synthesis, characterization, and photocatalysis of well-dispersible phase-pure anatase TiO2 nanoparticles, J. Photoenergy, 2013 (2013) 726872, doi: 10.1155/2013/726872.
  29. M.I. Pratheepa, M. Lawrence, X-ray diffraction analyses of titanium dioxide nanoparticles, Int. J. Sci. Res. Sci. Technol. (IJSRST), 3 (2017) 83–88.
  30. J.S.J. Hargreaves, Some considerations related to the use of the Scherrer equation in powder X-ray diffraction as applied to heterogeneous catalysts, Catal. Struct. React., 2 (2016) 33–37.
  31. I. Kim, N. Yamashita, H. Tanaka, Performance of UV and UV/H2O2 processes for the removal of pharmaceuticals detected in secondary effluent of a sewage treatment plant in Japan, J. Hazard. Mater., 166 (2009) 1134–1140.
  32. E.S. Elmolla, M. Chaudhuri, Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis, Desalination, 252 (2010) 46–52.
  33. M. Tamimi, S. Qourzal, N. Barka, A. Assabbane, Y. Ait-Ichou, Methomyl degradation in aqueous solutions by Fenton’s reagent and the photo-Fenton system, Sep. Purif. Technol., 61 (2008) 103–108.
  34. Y. Sun, Q. Yue, B. Gao, B. Wang, Q. Li, L. Huang, X. Xu, Comparison of activated carbons from Arundo donax Linn with H4P2O7 activation by conventional and microwave heating methods, Chem. Eng. J., 192 (2012) 308–314.
  35. S. Alahiane, S. Qourza, M. El Ouardi, A. Abaamrane, A. Assabbane, Factors influencing the photocatalytic degradation of Reactive yellow 145 by TiO2-coated non-woven fibers, Am. J. Anal. Chem., 5 (2014) 445–454.
  36. A. Nikravan, Amoxicillin and Ampicillin Removal From Wastewater by Fenton and Photo-Fenton Processes, Hacettepe University, 2015, p. 122.
  37. F.-S. Tabatabai-Yazdi, P.A. Ebrahimian, K.F. Esmaeili, K.N. Asasian, N. Gilani, Photocatalytic treatment of tetracycline antibiotic wastewater by silver/TiO2 nano sheets/reduced graphene oxide and artificial neural network modeling, Water Environ. Res., 92 (2020) 662–676.
  38. G.K. Türkay, H. Kumbur, Investigation of amoxicillin removal from aqueous solution by Fenton and photocatalytic oxidation processes, Kuwait J. Sci., 46 (2019) 85–93
  39. E. Elmolla, M. Chaudhuri, Optimization of Fenton process for treatment of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution, J. Hazard. Mater., 170 (2009) 666–672.
  40. G.V. Buxton, C.L. Greenstock, W. Phillips Helman, A.B. Ross, Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (OH/O) in aqueous solution, J. Phys. Chem. Ref. Data, 17 (2011), doi: 10.1063/1.555805.
  41. B. Kakavandi, N. Bahari, R. Rezaei Kalantary, F.E. Dehghani, Enhanced sono-photocatalysis of tetracycline antibiotic using TiO2 decorated on magnetic activated carbon (MAC@T) coupled with US and UV: a new hybrid system, Ultrason. Sonochem., 55 (2019) 75–85.
  42. R.B.P. Marcelino, L.N. Andrade, M.C.V.M. Starling, C.C. Amorim, M.L.T. Barbosa, R.P. Lopes, B.G. Reis, M.M.D. Leão, Evaluation of aerobic and anaerobic of real pharmaceutical wastewater from industrial production of antibiotics, Braz. J. Chem. Eng., 33 (2016) 445–452.
  43. S. Loaiza-Ambuludi, M. Panizza, N. Oturan, M.A. Oturan, Removal of the anti-inflammatory drug ibuprofen from water using homogeneous photocatalysis, Catal. Today, 224 (2014) 29–33.
  44. N. Olama, M. Dehghani, M. Malakootian, The removal of amoxicillin from aquatic solutions using the TiO2/UV-C nanophotocatalytic method doped with trivalent iron, Appl. Water Sci., 8 (2018) 1–12, doi: 10.1007/s13201-018-0733-7.
  45. D. Klauson, J. Babkina, K. Stepanova, M. Krichevskaya, S. Preis, Aqueous photocatalytic oxidation of amoxicillin, Catal. Today, 151 (2010) 39–45.