References

  1. F.A. Nasr, I. Abdelfattah, A.M. Shana, Cost-effective physicochemical treatment of carpet industrial wastewater for reuse, Egypt. J. Chem., 62 (2019) 609–620.
  2. E. Shakeri, M. Mousazadeh, H. Ahmadpari, I. Kabdaşlı, H.A. Jamali, N.S. Graça, M.M. Emamjomeh, Electrocoagulationflotation treatment followed by sedimentation of carpet cleaning wastewater: optimization of key operating parameters via RSM-CCD, Desal. Water Treat., 227 (2021) 163–176.
  3. C.G. Joseph, Y.H. Taufiq-Yap, N.A. Affandi, J.L.H. Nga, V. Vijayan, Photocatalytic treatment of detergent-contaminated wastewater: a short review on current progress, Korean J. Chem. Eng., 39 (2022) 484–498.
  4. S. Saroj, L. Singh, S.V. Singh, Photodegradation of Direct Blue-199 in carpet industry wastewater using iron-doped TiO2 nanoparticles and regenerated photocatalyst, Int. J. Chem. Kinet., 51 (2019) 189–205.
  5. H. Cüce, Ş.M. Yakut, E. Özak, Treatment of carpet washing wastewater with an advanced oxidation process, BEU J. Sci., 7 (2018) 339–348.
  6. G. Fan, S. Yang, B. Du, J. Luo, X. Lin, X. Li, Sono-photo hybrid process for the synergistic degradation of levofloxacin by FeVO4/BiVO4: mechanisms and kinetics, Environ. Res., 204 (2022) 112032, doi:10.1016/j.envres.2021.112032.
  7. K. Fouad, M. Bassyouni, M.G. Alalm, M.Y. Saleh, Recent developments in recalcitrant organic pollutants degradation using immobilized photocatalysts, Appl. Phys. A, 127 (2021) 612,
    doi: 10.1007/s00339-021-04724-1.
  8. J.O. Adeyemi, T. Ajiboye, D.C. Onwudiwe, Mineralization of antibiotics in wastewater via photocatalysis, Water Air Soil Pollut., 232 (2021) 219.
  9. G. Yashni, A. Al-Gheethi, R. Mohamed, M. Al-Sahari, Reusability performance of green zinc oxide nanoparticles for photocatalysis of bathroom greywater, Water Pract. Technol., 16 (2021) 364–376.
  10. A. Fraiese, V. Naddeo, C.S. Demirel, M. Prado, A. Cesaro, T. Zarra, H. Liu, V. Belgiorno, F. Ballesteros Jr., Removal of emerging contaminants in wastewater by sonolysis, photocatalysis and ozonation, Global Nest J., 21 (2019) 98–105.
  11. M. Khodadadi, T.J. Al-Musawi, H. Kamani, M.F. Silva, A.H. Panahi, The practical utility of the synthesis
    FeNi3@ SiO2@TiO2 magnetic nanoparticles as an efficient photocatalyst for the humic acid degradation, Chemosphere, 239 (2020) 124723, doi: 10.1016/j.chemosphere.2019.124723.
  12. C. Yang, H. Xie, Z. Wang, Y. Tan, N. Wang, Electro-Fenton degradation of high concentration Rhodamine B on nickel foam cathode catalyzed by cucumber bio-templated Fe3O4@PTFE, Int. J. Electrochem. Sci., 16 (2021) 151058, doi: doi: 10.20964/2021.01.54.
  13. K. Meiramkulova, M. Zhumagulov, G. Saspugayeva, Z. Jakupova, M. Mussimkhan, Treatment of poultry slaughterhouse wastewater with combined system, Potravinarstvo, 13 (2019) 706–712.
  14. N. Vela, M. Calín, M.J. Yáñez-Gascón, A. el Aatik, I. Garrido, G. Pérez-Lucas, J. Fenoll, S. Navarro, Removal of pesticides with endocrine disruptor activity in wastewater effluent by solar heterogeneous photocatalysis using ZnO/Na2S2O8, Water Air Soil Pollut., 230 (2019) 134, doi: 10.1007/s11270-019-4185-y.
  15. M. Antonopoulou, C. Kosma, T. Albanis, I. Konstantinou, An overview of homogeneous and heterogeneous photocatalysis applications for the removal of pharmaceutical compounds from real or synthetic hospital wastewaters under lab or pilot scale, Sci. Total Environ., 765 (2021) 144163, doi:10.1016/j.scitotenv.2020.144163.
  16. S.A. Asli, M. Taghizadeh, Sonophotocatalytic degradation of pollutants by ZnO-based catalysts: a review, ChemistrySelect, 5 (2020) 13720–13731.
  17. F. Khitab, J. Shah, M.R. Jan, Systematic assessment of visible light driven photocatalysts for the removal of cefixime in aqueous solution sonophotocatalytically, J. Environ. Anal. Chem., (2022), doi:10.1080/03067319.2022.2025790.
  18. Z. Yan, W. Huang, X Jiang, J. Gao, Y. Hu, H. Zhang, Q. Shi, Hollow structured black TiO2 with thickness-controllable microporous shells for enhanced visible-light-driven photocatalysis, Microporous Mesoporous Mater., 323 (2021) 111228, doi: 10.1016/j.micromeso.2021.111228.
  19. D. Alrousan, A. Afkhami, K. Bani-Melhem, P. Dunlop, Organic degradation potential of real greywater using
    TiO2-based advanced oxidation processes, Water, 12 (2020) 2811, doi: 10.3390/w12102811.
  20. E.M. de la Fournière, J.M. Meichtry, E.A. Gautier, A.G. Leyva, M.I. Litter, Treatment of ethylmercury chloride by heterogeneous photocatalysis with TiO2, J. Photochem. Photobiol., A, 411 (2021) 113205, doi:10.1016/j.jphotochem.2021.113205.
  21. C. Alvarado-Camacho, C.O. Castillo-Araiza, R.S. Ruiz-Martínez, Degradation of Rhodamine B in water alone or as part of a mixture by advanced oxidation processes, 209 (2022) 69–82.
  22. S.N. Ahmed, W. Haider, Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: a review, Nanotechnology, 29 (2018) 342001, doi: 10.1088/1361–6528/aac6ea.
  23. M. Samanta, M. Mukherjee, U.K. Ghorai, C. Bose, K.K. Chattopadhyay, Room temperature processed copper phthalocyanine nanorods: a potential sonophotocatalyst for textile dye removal, Mater. Res. Bull., 123 (2020) 110725, doi: 10.1016/j. materresbull.2019.110725.
  24. A. Al-Bsoul, M. Al-Shannag, M. Tawalbeh, A.A. Al-Taani, W.K. Lafi, A. Al-Othman, M. Alsheyab, Optimal conditions for olive mill wastewater treatment using ultrasound and advanced oxidation processes, Sci. Total Environ., 700 (2020) 134576, doi: 10.1016/j.scitotenv.2019.134576.
  25. V.K. Mahajan, G.H. Sonwane, Effective degradation and mineralization of real textile effluent by sonolysis, photocatalysis, and sonophotocatalysis using ZnO nanocatalyst, Nanochem. Res., 1 (2016) 258–263.
  26. P. Sravandas, L.K. Alexander, Facile hydrothermal synthesis and sonophotocatalytic performance of novel Bi2WO6 structure on the degradation of Rhodamine B, Mater. Today: Proc., 46 (2021) 2925–2929.
  27. M. Pirsaheb, N. Moradi, A systematic review of the sonophotocatalytic process for the decolorization of dyes in aqueous solution: synergistic mechanisms, degradation pathways, and process optimization, J. Water Process Eng., 44 (2021) 102314, doi: 10.1016/j.jwpe.2021.102314.
  28. T.J. Al-Musawi, G. McKay, P. Rajiv, N. Mengelizadeh, D. Balarak, Efficient sonophotocatalytic degradation of Acid Blue 113 dye using a hybrid nanocomposite of CoFe2O4 nanoparticles loaded on multi-walled carbon nanotubes, J. Photochem. Photobiol., A, 424 (2021) 113617, doi: 10.1016/j.jphotochem.2021.113617.
  29. H. Wei, M.H. Rahaman, J. Zhao, D. Li, J. Zhai, Hydrogen peroxide enhanced sonophotocatalytic degradation of Acid Orange 7 in aqueous solution: optimization by Box–Behnken design, J. Chem. Technol. Biotechnol., 96 (2021) 2647–2658.
  30. M.H. Abdurahman, A.Z. Abdullah, N.F. Shoparwe, A comprehensive review on sonocatalytic, photocatalytic, and sonophotocatalytic processes for the degradation of antibiotics in water: synergistic mechanism and degradation pathway, Chem. Eng. J., 413 (2021) 127412, doi: 10.1016/j.cej.2020.127412.
  31. S. Anandan, V.K. Ponnusamy, M. Ashokkumar, A review on hybrid techniques for the degradation of organic pollutants in aqueous environment, Ultrason. Sonochem., 67 (2020) 105130, doi:10.1016/j.ultsonch.2020.105130.
  32. P. Sathishkumar, R.V. Mangalaraja, O. Rozas, C. Vergara, H.D. Mansilla, M.A. Gracia-Pinilla, S. Anandan, Sonophotocatalytic mineralization of norflurazon in aqueous environment, Chemosphere, 146 (2016) 216–225.
  33. I. Gulkaya, G.A. Surucu, F.B. Dilek, Importance of H2O2/Fe2+ ratio in Fenton’s treatment of a carpet dyeing wastewater, J. Hazard. Mater., 136 (2006) 763–769.
  34. P. Kumar, T.T. Teng, S. Chand, K.L. Wasewar, Fenton oxidation of carpet dyeing wastewater for removal of COD and color, Desal. Water Treat., 28 (2011) 260–264.
  35. R. Poblete, E. Cortes, G. Salihoglu, N.K. Salihoglu, Ultrasound and heterogeneous photocatalysis for the treatment of vinasse from pisco production, Ultrason. Sonochem., 61 (2020) 104825, doi:10.1016/j.ultsonch.2019.104825.
  36. R.D.C. Soltani, S. Jorfi, M. Safari, M.-S. Rajaei, Enhanced sonocatalysis of textile wastewater using bentonite-supported ZnO nanoparticles: response surface methodological approach, J. Environ. Manage., 179 (2016) 47–57.
  37. G. Asgari, J. Feradmal, A. Poormohammadi, M. Sadrnourmohamadi, S. Akbari, Taguchi optimization for the removal of high concentrations of phenol from saline wastewater using electro-Fenton process, Desal. Water Treat., 57 (2016) 27331–27338.
  38. APHA, Standard Methods for the Examination of Water and Wastewater, American Public Health Association (APHA), Washington, DC, USA, 2005.
  39. I. Talinli, G.K. Anderson, Interference of hydrogen peroxide on the standard COD test, Water Res., 26 (1992) 107–110.
  40. Z.B. Gönder, G. Balcıoğlu, Y. Kaya, I. Vergili, Treatment of carwash wastewater by electrocoagulation using Ti electrode: optimization of the operating parameters, Int. J. Environ. Sci. Technol., 16 (2019) 8041–8052.
  41. G. Taguchi, Introduction to Quality Engineering—Designing Quality into Products and Processes, Kraus International, Asian Productivity Organization, Japan, 1986.
  42. Y. Kaya, Z.B. Gönder, I. Vergili, A. Ongen, Application of experimental design method for advanced treatment of dairy wastewater by ozonation, Environ. Prog., 38 (2019) 1–9.
  43. M. Kamalia, M. Khalaj, M.E.V. Costac, I. Capela, Optimization of kraft black liquor treatment using ultrasonically synthesized mesoporous tenorite nanomaterials assisted by Taguchi design, Chem. Eng. Sci., 401 (2020) 126040, doi: 10.1016/ j.cej.2020.126040.
  44. Y.Ş. Yildiz, E. Şenyiğit, Ş. İrdemez, Optimization of specific energy consumption for Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using Taguchi-neural method, Neural Comput. Appl., 23 (2013) 1061–1069.
  45. F. Ozyonar, Optimization of operational parameters of electrocoagulation process for real textile wastewater treatment using Taguchi experimental design method, Desal. Water Treat., 57 (2016) 2389–2399.
  46. Ş. İrdemez, Y.Ş. Yildiz, V. Tosunoğlu, Optimization of phosphate removal from wastewater by electrocoagulation with aluminum plate electrodes, Sep. Purif. Technol., 52 (2006) 394–401.
  47. V.B.K. Mullapudi, A. Salveru, A.J. Kora, An in-house UV-photolysis setup for the rapid degradation of both cationic and anionic dyes in dynamic mode through UV/H2O2-based advanced oxidation process, Int. J. Environ. Anal. Chem., (2020) 1–17, doi: 10.1080/03067319.2020.1800002.
  48. S. Sunasee, K.T. Wong, G. Lee, S. Pichiah, S. Ibrahim, C. Park, N.C. Kim, Y. Yoon, M. Jang, Titanium dioxide-based sonophotocatalytic mineralization of Bisphenol A and its intermediates, Environ. Sci. Pollut. Res., 24 (2017) 15488–15499.
  49. B. Kakavandi, M. Ahmadi, Efficient treatment of saline recalcitrant petrochemical wastewater using heterogeneous UV-assisted sono-Fenton process, Ultrason. Sonochem., 56 (2019) 25–36.
  50. M. Tir, N. Moulai-Mostefa, M. Nedjhioui, Optimizing decolorization of methylene blue dye by electrocoagulation using Taguchi approach, Desal. Water Treat., 55 (2015) 2705–2710.
  51. R.N. Padovan, E.B. Azevedo, Combining a sequencing batch reactor with heterogeneous photocatalysis (TiO2/UV) for treating a pencil manufacturer’s wastewater, Braz. J. Chem. Eng., 32 (2015) 99–106.
  52. S.D. Ayarea, P.R. Gogate, Sonocatalytic treatment of phosphonate containing industrial wastewater intensified using combined oxidation approaches, Ultrason. Sonochem., 51 (2019) 69–76.
  53. A.V. Karim, A. Shriwastav, Degradation of ciprofloxacin using photo, sono, and sonophotocatalytic oxidation with visible light and low-frequency ultrasound: degradation kinetics and pathways, Chem. Eng. J., 392 (2020) 124853, doi: 10.1016/j. cej.2020.124853.
  54. E. Hapeshi, Io. Fotiou, D. Fatta-Kassinos, Sonophotocatalytic treatment of ofloxacin in secondary treated effluent and elucidation of its transformation products, Chem. Eng. J., 224 (2013) 96–105.
  55. S.G. Poulopoulos, G. Ulykbanova, C.J. Philippopoulos, Photochemical mineralization of amoxicillin medicinal product by means of UV, hydrogen peroxide, titanium dioxide and iron, Environ. Technol., 42 (2019) 2941–2949.
  56. S.D. Ayarea, P.R. Gogate, Sonophotocatalytic oxidation based treatment of phthalocyanine pigment containing industrial wastewater intensified using oxidising agents, Sep. Purif. Technol., 233 (2020) 115979, doi: 10.1016/j.seppur.2019.115979.
  57. S.G. Poulopoulos, G. Ulykbanova, C.J. Philippopoulos, Photochemical mineralization of amoxicillin medicinal product by means of UV, hydrogen peroxide, titanium dioxide and iron, Environ. Technol., 42 (2021) 2941–2949.
  58. D. Kanakaraju, C.A. Motti, B.D. Glass, M. Oelgemoller, Photolysis and TiO2-catalysed degradation of diclofenac in surface and drinking water using circulating batch photoreactors, Environ. Chem., 11 (2014) 51–62.
  59. G. Dogdu Okcu, T. Tunacan, E. Dikmen, Photocatalytic degradation of yellow 2G dye using titanium dioxide/ultraviolet A light through a Box–Behnken experimental design: optimization and kinetic study, J. Environ. Sci. Health A, 54 (2019) 136–145.
  60. G.K. Dinesh, S. Anandan, T. Sivasankar, Synthesis of Fe-doped Bi2O3 nanocatalyst and its sonophotocatalytic activity on synthetic dye and real textile wastewater, Environ. Sci. Pollut. Res., 23 (2016) 20100–20110.
  61. F. Ghanbari, A. Yaghoot-Nezhad, S. Wacławek, K.-Y.A. Lin, J. Rodríguez-Chueca, F. Mehdipour, Comparative investigation of acetaminophen degradation in aqueous solution by UV/chlorine and UV/H2O2 processes: kinetics and toxicity assessment, process feasibility and products identification, Chemosphere, 285 (2021) 131455, doi: 10.1016/j. chemosphere.2021.131455.
  62. E.S. Elmolla, M. Chaudhuri, The feasibility of using combined TiO2 photocatalysis-SBR process for antibiotic wastewater treatment, Desalination, 272 (2011) 218–224.
  63. T. Steven, R. Nawaz, N.T. Sahrin, K.M. Lee, C.L. Bianchi, C.F. Kait, H2O2-assisted sonophotocatalytic degradation of diclofenac using a visible light-active flower-like micron-sized TiO2 photocatalyst, Malays. J. Chem., 23 (2021) 108–125.
  64. T.A. Bullo, Y.M. Bayisa, M.S. Bultum, Optimization and biosynthesis of calcined chicken eggshell doped titanium dioxide photocatalyst based nanoparticles for wastewater treatment, SN Appl. Sci., 4 (2022) 17, doi: 10.1007/ s42452-021-04900-1.
  65. R.D.C. Soltani, M. Safari, Periodate-assisted pulsed sonocatalysis of real textile wastewater in the presence of MgO nanoparticles: response surface methodological optimization, Ultrason. Sonochem., 32 (2016) 181–190.
  66. Y.Ş. Yildiz, Optimization of Bomaplex Red CR-L dye removal from aqueous solution by electrocoagulation using aluminum electrodes, J. Hazard. Mater., 153 (2008) 194–200.
  67. Z.I. Abbas, A.S. Abbas, Optimization of the electro-Fenton process for COD reduction from refinery wastewater, Environ. Eng. Manage., 19 (2020) 2029–2037.
  68. E. Nas, N. Altan Özbek, Optimization the machining parameters in turning of hardened hot work tool steel using cryogenically treated tools, Surf. Rev. Lett., 27 (2020) 1950177, doi: 10.1142/S0218625X19501774.
  69. P.H. Sreeja, K.J. Sosamony, A comparative study of homogeneous and heterogeneous photo-Fenton process for textile wastewater treatment, Proc. Technol., 24 (2016) 217–223.
  70. M.S. Phadke, Quality Engineering Using Robust Design, Prentice Hall, New Jersey, 1989, pp. 61–292.
  71. Ö. Gökkuş, F. Çoşkun, M. Kocaoğlu, Y.Ş. Yıldız, Determination of optimum conditions for color and COD removal of Reactive Blue 19 by Fenton oxidation process, Desal. Water Treat., 52 (2014) 6156–6165.
  72. M. Yilmaz, M.E. Keskin, Optimal okuma şartlarının Taguchi yöntemiyle belirlenmesi, Acad. Platform J. Eng. Sci., 7 (2019) 25–32.
  73. R. Khalegh, F. Qaderi, Optimization of the effect of nanoparticle morphologies on the cost of dye wastewater treatment via ultrasonic/photocatalytic hybrid process, Appl. Nanosci., 9 (2019) 1869–1889.