References
- Ministry of Environment, Water and Agriculture, Saudi Arabia.
Available at: www.mewa.gov.sa
- S.H. Aladwani, M.A. Al-Obaidi, I.M. Mujtaba, Performance of
reverse osmosis based desalination process using spiral wound
membrane: sensitivity study of operating parameters under
variable seawater conditions, Clean. Eng. Technol., 5 (2021)
100284, doi: 10.1016/j.clet.2021.100284.
- Annual Reports, Saline Water Conversion Corporation (SWCC),
Saudi Arabia. Available at: www.swcc.gov.sa
- I. Fitzsimons, B. Corcoran, P. Young, G. Foley, Exergy analysis
of water purification and desalination: a study of exergy model
approaches, Desalination, 359 (2015) 212–224.
- A. Al Ghamdi, I. Mustafa, Exergy analysis of a MSF desalination
plant in Yanbu, Saudi Arabia, Desalination, 399 (2016) 148–158.
- V. Romero-Ternero, L. García-Rodríguez, C. Gómez-Camacho,
Exergy analysis of a seawater reverse osmosis plant,
Desalination, 175 (2005) 197–207.
- A.M. Blanco-Marigorta, M. Masi, G. Manfrida, Exergoenvironmental
analysis of a reverse osmosis desalination plant
in Gran Canaria, Energy, 76 (2014) 223–232.
- Y. Cerci, Exergy analysis of a reverse osmosis desalination plant
in California, Desalination, 142 (2002) 257–266.
- I.H. Aljundi, Second-law analysis of a reverse osmosis plant in
Jordan, Desalination, 239 (2009) 207–215.
- A. Gasmi, J. Belgaieb, N. Hajji, Technico-economic study of
an industrial reverse osmosis desalination unit, Desalination,
261 (2010) 175–180.
- M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Second law analysis
of reverse osmosis desalination plants: an alternative design
using pressure retarded osmosis, Energy, 36 (2011) 6617–6626.
- C. Knutson, Discussion of “Second law analysis of reverse
osmosis desalination plants: An alternative design using
pressure retarded osmosis”, Energy, 46 (2012) 688–690.
- M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Discussion of
“Second law analysis of reverse osmosis desalination plants: an
alternative design using pressure retarded osmosis”, Energy,
46 (2012) 691–693.
- A. Al-Zahrani, J. Orfi, Z. Al-Suhaibani, B. Salim, H. Al-Ansary,
Thermodynamic analysis of a reverse osmosis desalination unit
with energy recovery system, Procedia Eng., 33 (2012) 404–414.
- N. Kahraman, Y.A. Cengel, B. Wood, Y. Cerci, Exergy analysis of
a combined RO, NF and EDR desalination plant, Desalination,
171 (2004) 217–232.
- B. Peñate, L. García-Rodríguez, Energy optimization of existing
SWRO (seawater reverse osmosis) plants with ERT (energy
recovery turbines): technical and thermoeconomic assessment,
Energy, 36 (2011) 613–626.
- B.A. Qureshi, S.M. Zubair, Energy-exergy analysis of seawater
reverse osmosis plants, Desalination, 385 (2016) 138–147.
- B.A Qureshi, S.M. Zubair, Exergetic efficiency of NF, RO and
EDR desalination plants, Desalination, 378 (2016) 92–99.
- M. Soin, S. Jedrzejak, C. Bouchard, On maximum power of
reverse osmosis separation processes, Desalination, 190 (2006)
212–220.
- N.M. Eshoul, B. Agnew, M.A. Al-Weshahi, M.S. Atab, Exergy
analysis of a two-pass reverse osmosis (RO) desalination
unit with and without an energy recovery turbine (ERT) and
pressure exchanger (PX), Energies, 8 (2015) 6910–6925.
- K.H. Mistry, R.K. McGovern, G.P. Thiel, E.K. Summers,
S.M. Zubair, J.J. Lienhard, Entropy generation analysis of
desalination technologies, Entropy, 13 (2011) 1829–1864.
- K.G. Nayyer, M.H. Sharqawy, L.D. Banchik, J.H. Lienhard,
Thermophysical properties of seawater: a review and new
correlations that include pressure dependence, Desalination,
390 (2016) 1–24.
- Magazine – Water Condition & Purification, January 2005.
Available at: https://www.lenntech.com/composition-seawater.
htm#ixzz7Dma0fSoC
- A. Ulfsbo, Z. Abbas, D.R. Turner, Activity coefficients of a
simplified seawater electrolyte at varying salinity (5–40) and
temperature (0°C and 25°C) using Monte Carlo Simulations,
Mar. Chem., 171 (2015) 78–86.
- D.G. Archer, Thermodynamic properties of the NaCl+H2O
system I. Thermodynamic properties of NaCl(Cr),
J. Phys.
Chem. Ref. Data, 21 (1992), doi: 10.1063/1.555913.
- N. Sato, Chemical Energy and Exergy: An Introduction to
Chemical Thermodynamics for Engineers, ISBN 044451645X,
2004.
- R. Pal, Chemical exergy of ideal and non-ideal gas mixtures
and liquid solutions with applications, Int. J. Mech. Eng. Educ.,
47 (2019) 44–72.
- J. Szargut, Egzergia. Poradnik obliczania I stosowania,
Widawnictwo Politechniki Shlaskej, Gliwice 2007 (J. Szargut,
Exergy Calculation and Application Guide, Widawnictwo
Politechniki Shlaskej, Gliwice, 2007).
- O. Miyawaki, A. Saito, T. Matsuo, K. Nakamura, Activity
and activity coefficient of water in aqueous solutions and
their relationships with solution structure parameters, Biosci.
Biotechnol., Biochem., 61 (1997) 466–469.
- A.M. Blanco-Marigorta, A. Lozano-Medina, J.D. Marcos,
A critical review of definitions for exergetic efficiency in reverse
osmosis desalination plants, Energy, 137 (2017) 752–760.
- M.H. Sharqawy, S.M. Zubair, J.H. Lienhard, Formulation of
Seawater Flow Exergy using Accurate Thermodynamic Data,
IMECE2010-40915, Proceedings of the IMECE2010, ASME 2010
International Mechanical Engineering Congress and Exposition,
November 12–18, 2010.
- M.W. Shahzad, M. Burhan, K.C. Ng, Pushing desalination
recovery to the maximum limit: membrane and thermal
processes integration, Desalination, 416 (2017) 54–64.
- M.W. Shahzad, K.C. Ng, K. Thu, B.B. Saha, W.G. Chun, Multi
effect desalination and adsorption desalination (MEDAD):
a hybrid desalination method, Appl. Therm. Eng., 72 (2014)
289–297.