References

  1. M.R. Razak, A.Z. Aris, N.A.C. Zakaria, S.Y. Wee, N.A.H. Ismail, Accumulation and risk assessment of heavy metals employing species sensitivity distributions in Linggi River, Negeri Sembilan, Malaysia, Ecotoxicol. Environ. Saf., 211 (2021) 111905, doi: 10.1016/j.ecoenv.2021.111905.
  2. J. Singh, P. Yadav, A.K. Pal, V. Mishra, Water Pollutants: Origin and Status, D. Pooja, P. Kumar, P. Singh, S. Patil, Eds., Water Pollutants Monitoring: Role of Material, Advanced Functional Materials and Sensors, Springer Nature Singapore Pte Ltd., Singapore, 2020, pp. 5–20.
  3. C.L. Rollinson, Chapter 2 – Chromium Compounds, A.F. Trotman-Dickenson, Ed., The Chemistry of Chromium, Molybdenum and Tungsten: Pergamon International Library of Science, Technology, Engineering and Social Studies, Pergamon Press Ltd., England, 1973, pp. 623–664.
  4. Florenly, E. Fachrial, H. Aziz, Syafrizayanti, R. Zein, The effects of Cr(VI) in the kidney of experimental rats and utilization of longanpeel fruit (Dimocarpuslongan) as renal protector in dentistry, Der Pharma Chem., J. Med. Chem. Pharm. Chem. Pharm. Sci. Comput. Chem., 8 (2016) 144–148.
  5. S.B. Abadin, H. Fay, M. Ingerman, L. Tencza, B. Yu, D. Wilbur, Toxicological Profile for Chromium, Atlanta, 2012.
  6. WHO, Chromium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality, Geneva, Switzerland, 2020.
  7. Menteri Kesehatan Republik Indonesia, Peraturan Menteri Kesehatan Republik Indonesia Nomor 32 Tahun 2017 Tentang Standar Baku Mutu Kesehatan Lingkungan Dan Persyaratan Kesehatan Air Untuk Keperluan Higiene Sanitasi, Kolam Renang, Solus Per Aqua dan Pemandian Umum, Peratur, Menteri Kesehat, Republik Indones., 2017, pp. 1–20.
  8. D. Sharma, P.K. Chaudhari, A.K. Prajapati, Removal of chromium(VI) and lead from electroplating effluent using electrocoagulation, Sep. Sci. Technol., 55 (2020) 321–331.
  9. A.S. Dharnaik, P.K. Ghosh, Hexavalent chromium [Cr(VI)] removal by the electrochemical ion-exchange process, Environ. Technol. (United Kingdom), 35 (2014) 2272–2279.
  10. Z. Zhao, H. An, J. Lin, M. Feng, V. Murugadoss, T. Ding, H. Liu, Q. Shao, X. Mai, N. Wang, H. Gu, S. Angaiah, Z. Guo, Progress on the photocatalytic reduction removal of chromium contamination, Chem. Rec., 19 (2019) 873–882.
  11. W. Duan, G. Chen, C. Chen, R. Sanghvi, A. Iddya, S. Walker, H. Liu, A. Ronen, D. Jassby, Electrochemical removal of hexavalent chromium using electrically conducting carbon nanotube/polymer composite ultrafiltration membranes, J. Membr. Sci., 531 (2017) 160–171.
  12. T. Altun, E. Pehlivan, Removal of Cr(VI) from aqueous solutions by modified walnut shells, Food Chem., 132 (2012) 693–700.
  13. R. Zein, D.A. Hidayat, M. Elfia, N. Nazarudin, E. Munaf, Sugar palm Arenga pinnata Merr (Magnoliophyta) fruit shell as biomaterial to remove Cr(III), Cr(VI), Cd(II) and Zn(II) from aqueous solution, J. Water Supply Res. Technol., 63 (2014) 553–559.
  14. E. Vaiopoulou, P. Gikas, Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review, Water Res., 46 (2012) 549–570.
  15. M.P.S. Kumar, B.R. Phanikumar, Response surface modelling of Cr6+ adsorption from aqueous solution by neem bark powder: Box–Behnken experimental approach, Environ. Sci. Pollut. Res., 20 (2013) 1327–1343.
  16. C. Lin, W. Luo, T. Luo, Q. Zhou, H. Li, L. Jing, A study on adsorption of Cr(VI) by modified rice straw: characteristics, performances and mechanism, J. Cleaner Prod., 196 (2018) 626–634.
  17. E. Bazrafshan, M. Sobhanikia, F.K. Mostafapour, H. Kamani, D. Balarak, Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: thermodynamic, equilibrium and kinetic studies, Global Nest J., 19 (2017) 269–277.
  18. Y. Wu, Y. Fan, M. Zhang, Z. Ming, S. Yang, A. Arkin, P. Fang, Functionalized agricultural biomass as a low-cost adsorbent: utilization of rice straw incorporated with amine groups for the adsorption of Cr(VI) and Ni(II) from single and binary systems, Biochem. Eng. J., 105 (2016) 27–35.
  19. O. Alabi, A.A. Olanrewaju, T.J. Afolabi, Process optimization of adsorption of Cr(VI) on adsorbent prepared from Bauhinia rufescens pod by Box–Behnken design, Sep. Sci. Technol., 55 (2020) 47–60.
  20. G.K. Gupta, M.K. Mondal, Mechanism of Cr(VI) uptake onto sagwan sawdust derived biochar and statistical optimization via response surface methodology, Biomass Convers. Biorefin., (2020), doi: 10.1007/s13399-020-01082-5.
  21. N.K. Mondal, A. Samanta, P. Roy, B. Das, Optimization study of adsorption parameters for removal of Cr(VI) using Magnolia leaf biomass by response surface methodology, Sustainable Water Resour. Manage., 5 (2019) 1627–1639.
  22. BPS RI, Data BPS Produksi Padi 2019, 2019. Available at: https:// www.bps.go.id/
  23. M. Jain, V.K. Garg, K. Kadirvelu, M. Sillanpää, Combined effect of sunflower stem carbon–calcium alginate beads for the removal and recovery of chromium from contaminated water in column mode, Ind. Eng. Chem. Res., 54 (2015) 1419–1425.
  24. R.C. Sun, J. Tomkinson, P.L. Ma, S.F. Liang, Comparative study of hemicelluloses from rice straw by alkali and hydrogen peroxide treatments, Carbohydr. Polym., 42 (2000) 111–122.
  25. S. Mirmohamadsadeghi, K. Karimi, Chapter 21 – Recovery of Silica From Rice Straw and Husk, S. Varjani,
    A. Pandey, E. Gnansounou, S.K. Khanal, S. Raveendran, Eds., Current Developments in Biotechnology and Bioengineering: Resource Recovery from Wastes, Elsevier, 2020, pp. 411–433.
  26. L. Fu, Y. Liu, Z. Wang, Y. Chen, C. He, Ion adsorption of rice straw to marine heavy metal polluted wastewater, J. Coastal Res., 83 (2018) 359–363.
  27. H. Gao, Y. Liu, G. Zeng, W. Xu, T. Li, W. Xia, Characterization of Cr(VI) removal from aqueous solutions
    by a surplus agricultural waste—rice straw, J. Hazard. Mater., 150 (2008) 446–452.
  28. W. Cao, Z. Dang, X.Y. Yi, C. Yang, G.N. Lu, Y.F. Liu, S.Y. Huang, L.C. Zheng, Removal of chromium(VI) from electroplating wastewater using an anion exchanger derived from rice straw, Environ. Technol. (United Kingdom), 34 (2013) 7–14.
  29. B. Singha, S.K. Das, Biosorption of Cr(VI) ions from aqueous solutions: kinetics, equilibrium, thermodynamics and desorption studies, Colloids Surf., B, 84 (2011) 221–232.
  30. S. Yakoyama, M. Yukihiko, The Asian Biomass Handbook: A Guide for Biomass Production and Utilization, 1st ed., The Japan Institute of Energy, Japan, 2008.
  31. S. Fauzia, H. Aziz, D. Dahlan, J. Namieśnik, R. Zein, Adsorption of Cr(VI) in aqueous solution using sago bark (metroxylon sagu) as a new potential biosorbent, Desal. Water Treat., 147 (2019) 191–202.
  32. V.C. Srivastava, I.D. Mall, I.M. Mishra, Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA, J. Hazard. Mater., 134 (2006) 257–267.
  33. T.A. Davis, B. Volesky, A. Mucci, A review of the biochemistry of heavy metal biosorption by brown algae, Water Res., 37 (2003) 4311–4330.
  34. T.K. Naiya, B. Singha, S.K. Das, FTIR study for the Cr(VI) removal from aqueous solution using rice waste, Int. Proc. Chem. Biol. Environ. Eng., 10 (2011) 114–119.
  35. A.S. Sharma, S.A. Bhalerao, Batch removal of chromium(VI) by biosorption on to banana peels
    (Musa Paradisiaca L.), World Wide J. Multidiscip. Res. Dev., 4 (2018) 5–17.
  36. M. Nigam, S. Rajoriya, S. Rani Singh, P. Kumar, Adsorption of Cr(VI) ion from tannery wastewater on tea waste: kinetics, equilibrium and thermodynamics studies, J. Environ. Chem. Eng., 7 (2019) 103188, doi:10.1016/j.jece.2019.103188.
  37. A. Da̧browski, Z. Hubicki, P. Podkościelny, E. Robens, Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method, Chemosphere, 56 (2004) 91–106.
  38. W. Cao, Z. Dang, G.N. Lu, Kinetics and mechanism of Cr(VI) Sorption from aqueous solution on a modified lignocellulosic material, Environ. Eng. Sci., 30 (2013) 672–680.
  39. H. Li, X. Dong, E.B. da Silva, L.M. de Oliveira, Y. Chen, L.Q. Ma, Mechanisms of metal sorption by biochars: biochar characteristics and modifications, Chemosphere, 178 (2017) 466–478.
  40. I. Barmina, A. Lickrastina, R. Valdmanis, M. Zake, A. Arshanitsa, V. Solodovnik, G. Telysheva, Effects of biomass composition variations on gasification and combustion characteristics, Eng. Rural Dev., (2013) 382–387.
  41. Y. Feng, Y. Liu, L. Xue, H. Sun, Z. Guo, Y. Zhang, L. Yang, Carboxylic acid functionalized sesame straw:
    a sustainable cost-effective bioadsorbent with superior dye adsorption capacity, Bioresour. Technol., 238 (2017) 675–683.
  42. N.D. Shooto, Removal of toxic hexavalent chromium (Cr(VI)) and divalent lead (Pb(II)) ions from aqueous solution by modified rhizomes of Acorus calamus, Surf. Interfaces, 20 (2020) 100624, doi:10.1016/j.surfin.2020.100624.
  43. K. Legrouri, E. Khouya, H. Hannache, M. El Hartti, M. Ezzine, R. Naslain, Activated carbon from molasses efficiency for Cr(VI), Pb(II) and Cu(II) adsorption: a mechanistic study, Chem. Int., 3 (2017) 301–310.
  44. Z. Chaidir, R. Zein, Q. Hasanah, H. Nurdin, H. Aziz, Absorption of Cr(III) and Cr(VI) metals in aqueous solution using Mangosteen Rind (Pithecellobium jiringa (jack) prain.), J. Chem. Pharm. Res., 7 (2015) 948–956.
  45. X. Shi, Y. Qiao, X. An, Y. Tian, H. Zhou, High-capacity adsorption of Cr(VI) by lignin-based composite: characterization, performance and mechanism, Int. J. Biol. Macromol., 159 (2020) 839–849.
  46. M. Kumar, R. Tamilarasan, Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon, Arabian J. Chem., 10 (2017) S1567–S1577.
  47. I. Langmuir, The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., 40 (1918) 1361–1403.
  48. N. Ayawei, A.N. Ebelegi, D. Wankasi, Modelling and interpretation of adsorption isotherms, J. Chem., 2017 (2017) 1–11.
  49. D. Balarak, M. Baniasadi, S. Lee, M.J. Shim, Ciprofloxacin adsorption onto Azolla filiculoides activated carbon from aqueous solutions, Desal. Water Treat., 218 (2021) 444–453.
  50. U. Israel, U.M. Eduok, Biosorption of zinc from aqueous solution using coconut (Cocos nucifera L) coir dust, Sch. Res. Libr. Arch. Appl. Sci. Res., 4 (2012) 809–819.
  51. U. Khalil, M. Bilal Shakoor, S. Ali, M. Rizwan, M. Nasser Alyemeni, L. Wijaya, Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater, J. Saudi Chem. Soc., 24 (2020) 799–810.
  52. R. Zein, S. Syukri, M. Muhammad, I. Pratiwi, D.R. Yutaro, The ability of Pensi (Corbicula moltkiana) shell to adsorb Cd(II) and Cr(VI) ions, AIP Conf. Proc., 2023 (2018) 020099.
  53. G.M.Y.S. Ho, Pseudo-second-order model for sorption processes, Process Biochem., 34 (1999) 451–465.
  54. W.J. Weber, J.C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89 (1963) 31–59.
  55. A. Pholosi, E.B. Naidoo, A.E. Ofomaja, Intraparticle diffusion of Cr(VI) through biomass and magnetite coated biomass: a comparative kinetic and diffusion study, S. Afr. J. Chem. Eng., 32 (2020) 39–55.
  56. K.K. Singh, R. Rastogi, S.H. Hasan, Removal of Cr(VI) from wastewater using rice bran, J. Colloid Interface Sci., 290 (2005) 61–68.
  57. M.H. Gonzalez, G.C.L. Araújo, C.B. Pelizaro, E.A. Menezes, S.G. Lemos, G.B. de Sousa, A.R.A. Nogueira, Coconut coir as biosorbent for Cr(VI) removal from laboratory wastewater, J. Hazard. Mater., 159 (2008) 252–256.
  58. K.M.S. Sumathi, S. Mahimairaja, R. Naidu, Use of low-cost biological wastes and vermiculite for removal of chromium from tannery effluent, Bioresour. Technol., 96 (2005) 309–316.
  59. F. Gode, E.D. Atalay, E. Pehlivan, Removal of Cr(VI) from aqueous solutions using modified red pine sawdust,
    J. Hazard. Mater., 152 (2008) 1201–1207.
  60. T. Chen, Z. Zhou, S. Xu, H. Wang, W. Lu, Adsorption behavior comparison of trivalent and hexavalent chromium on biochar derived from municipal sludge, Bioresour. Technol., 190 (2015) 388–394.
  61. T. Brahmaiah, L. Spurthi, K. Chandrika, S. Ramanaiah, K.S. Sai Prasad, Kinetics of heavy metal (Cr and Ni) removal from the wastewater by using low-cost adsorbent, World J. Pharm. Pharm. Sci., 4 (2015) 1600–1610.
  62. M. Sulyman, J. Namiesnik, A. Gierak, Low-cost adsorbents derived from agricultural by-products/wastes for enhancing contaminant uptakes from wastewater: a review, Polish J. Environ. Stud., 26 (2017) 479–510.