References

  1. B. Qin, H. Luo, G. Liu, R. Zhang, S. Chen, Y. Hou, Y. Luo, Nickel ion removal from wastewater using the microbial electrolysis cell, Bioresour. Technol., 121 (2012) 458–461.
  2. A. Bhatnagar, A.K. Minocha, Biosorption optimization of nickel removal from water using Punica granatum peel waste, Colloids Surf., B, 76 (2010) 544–548.
  3. M.G.A. Vieira, A.F. Almeida Neto, M.L. Gimenes, M.G.C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater., 177 (2010) 362–371.
  4. N. Boujelben, J. Bouzid, Z. Elouear, Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems, J. Hazard. Mater., 163 (2009) 376–382.
  5. E. Katsou, S. Malamis, K.J. Haralambous, M. Loizidou, Use of ultrafiltration membranes and aluminosilicate minerals for nickel removal from industrial wastewater, J. Membr. Sci., 360 (2010) 234–249.
  6. E. Denkhaus, K. Salnikow, Nickel essentiality, toxicity, and carcinogenicity, Crit. Rev. Oncol. Hematol., 42 (2002) 35–56.
  7. M.A.K.M. Hanafiah, H. Zakaria, W.S.W. Ngah, Base treated cogon grass (Imperata cylindrica) as an adsorbent for the removal of Ni(II): kinetic, isothermal and fixed-bed column studies, CLEAN – Soil, Air, Water, 38 (2010) 248–256.
  8. USEPA, Guidelines For Water Reuse, United States Environmental Protection Agency, 2004.
  9. M. El-Sadaawy, O. Abdelwahab, Adsorptive removal of nickel from aqueous solutions by activated carbons from doum seed (Hyphaenethebaica) coat, Alexandria Eng. J., 53 (2014) 399–408.
  10. H. Kalavathy, B. Karthik, L.R. Miranda, Removal and recovery of Ni and Zn from aqueous solution using activated carbon from Hevea brasiliensis: batch and column studies, Colloids Surf., B, 78 (2010) 291–302.
  11. R. Sharma, B. Singh, Removal of Ni(II) ions from aqueous solutions using modified rice straw in a fixed-bed column, Bioresour. Technol., 146 (2013) 519–524.
  12. J. Febrianto, A.N. Kosasih, J. Sunarso, Y.-H. Ju, N. Indraswati, S. Ismadji, Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: a summary of recent studies, J. Hazard. Mater., 162 (2009) 616–645.
  13. E. Gutiérrez-Segura, A. Colín-Cruz, C. Fall, M. Solache-Ríos, P. Balderas-Hernández, Comparison of Cd–Pb adsorption on commercial activated carbon and carbonaceous material from pyrolysed sewage sludge in column system, Environ. Technol., 30 (2009) 455–461.
  14. S.M. Nomanbhay, K. Palanisamy, Removal of heavy metal from industrial wastewater using chitosan coated oil palm shell charcoal, Electron. J. Biotechnol., 8 (2005) 43–53.
  15. E. Malkoc, Y. Nuhoglu, Removal of Ni(II) ions from aqueous solutions using waste of tea factory: adsorption on a fixed-bed column, J. Hazard. Mater., 135 (2006) 328–336.
  16. B. Fonseca, A. Teixeira, H. Figueiredo, T. Tavares, Modelling of the Cr(VI) transport in typical soils of the North of Portugal, J. Hazard. Mater., 167 (2009) 756–762.
  17. N. Miralles, C. Valderrama, I. Casas, M. Martínez, A. Florido, Cadmium and lead removal from aqueous solution by grape stalk wastes: modeling of a fixed-bed column, J. Chem. Eng. Data, 55 (2010) 3548–3554.
  18. V.A. Lemos, P.X. Baliza, Amberlite XAD-2 functionalized with 2-aminothiophenol as a new sorbent for on-line preconcentration of cadmium and copper, Talanta, 67 (2005) 564–570.
  19. M. Dogru, R. Gul-Guven, S. Erdogan, The use of Bacillus subtilis immobilized on Amberlite XAD-4 as a new biosorbent in trace metal determination, J. Hazard. Mater., 149 (2007) 166–173.
  20. E.J. dos Santos, A.B. Herrmann, A.S. Ribeiro, A.J. Curtius, Determination of Cd in biological samples by flame AAS following on-line preconcentration by complexation with O,O-diethyldithiophosphate and solid phase extraction with Amberlite XAD-4, Talanta, 65 (2005) 593–597.
  21. S. Baytak, A. Rehber Türker, The use of Agrobacterium tumefacients immobilized on Amberlite XAD-4 as a new biosorbent for the column preconcentration of iron(III), cobalt(II), manganese(II) and chromium(III), Talanta, 65 (2005) 938–945.
  22. S. Özdemir, R. Gul-Guven, E. Kilinc, M. Dogru, S. Erdogan, Preconcentration of cadmium and nickel using the bioadsorbent Geobacillus thermoleovorans subsp. stromboliensis immobilized on Amberlite XAD-4, Microchim. Acta, 169 (2010) 79–85.
  23. K.H. Chu, Improved fixed-bed models for metal biosorption, Chem. Eng. J., 97 (2004) 233–239.
  24. B.C. Pan, F.W. Meng, X.Q. Chen, B.J. Pan, X.T. Li, W.M. Zhang, X. Zhang, J.L. Chen, Q.X. Zhang, Y. Sun, Application of an effective method in predicting breakthrough curves of fixedbed adsorption onto resin adsorbent, J. Hazard. Mater., 124 (2005) 74–80.
  25. B. Volesky, Detoxification of metal-bearing effluents: biosorption for the next century, Hydrometallurgy, 59 (2001) 203–216.
  26. J. Qu, T. Song, J. Liang, X. Bai, Y. Li, Y. Wei, S. Huang, L. Dong, Y. Jin, Adsorption of lead(II) from aqueous solution by modified Auricularia matrix waste: a fixed-bed column study, Ecotoxicol. Environ. Saf., 169 (2019) 722–729.
  27. M. Ince, O. Kaplan Ince, Application of response surface methodological approach to optimize removal of Cr ions from industrial wastewater, At. Spectrosc., 40 (2019) 91–97.
  28. O. Kaplan Ince, M. Ince, A. Onal, Response surface modeling for Pb(II) removal from alcoholic beverages using natural clay: process optimization with Box–Behnken experimental design and determination by electrothermal AAS, At. Spectrosc., 39 (2018) 242–250.
  29. M.N.V. Ravi Kumar, A review of chitin and chitosan applications, React. Funct. Polym., 46 (2000) 1–27.
  30. Ş. Alpat, S. Kilinç Alpat, B. Hilal Çadirci, Ö. Özbayrak, İ. Yasa, Effects of biosorption parameter: kinetics, isotherm and thermodynamics for Ni(II) biosorption from aqueous solution by Circinella sp., Electron. J. Biotechnol., 13 (2010) 1–19.
  31. T. Eticha, A. Hymete, Health risk assessment of heavy metals in locally produced beer to the population in Ethiopia, J. Bioanal. Biomed., 6 (2014) 65–68.
  32. S. Zou, H. Wang, X. Wang, S. Zhou, X. Li, Y. Feng, Application of experimental design techniques in the optimization of the ultrasonic pretreatment time and enhancement of methane production in anaerobic co-digestion, Appl. Energy, 179 (2016) 191–202.
  33. S. Perincek, K. Duran, Optimization of enzymatic and ultrasonic bio-scouring of linen fabrics by aid of Box–Behnken Experimental Design, J. Cleaner Prod., 135 (2016) 1179–1188.
  34. H. Bakraouy, S. Souabi, K. Digua, O. Dkhissi, M. Sabar, M. Fadil, Optimization of the treatment of an anaerobic pretreated landfill leachate by a coagulation–flocculation process using experimental design methodology, Process Saf. Environ. Prot., 109 (2017) 621–630.
  35. J.N. Sahu, J. Acharya, B.C. Meikap, Response surface modeling and optimization of chromium(VI) removal from aqueous solution using Tamarind wood activated carbon in batch process, J. Hazard. Mater., 172 (2009) 818–825.
  36. A. Asfaram, M. Ghaedi, S. Hajati, M. Rezaeinejad, A. Goudarzi, M.K. Purkait, Rapid removal of Auramine-O and Methylene blue by ZnS:Cu nanoparticles loaded on activated carbon: a response surface methodology approach, J. Taiwan Inst. Chem. Eng., 53 (2015) 80–91.
  37. E.A. Dil, M. Ghaedi, A. Ghaedi, A. Asfaram, M. Jamshidi, M.K. Purkait, Application of artificial neural network and response surface methodology for the removal of crystal violet by zinc oxide nanorods loaded on activate carbon: kinetics and equilibrium study, J. Taiwan Inst. Chem. Eng., 59 (2016) 210–220.
  38. M. Ince, O. Kaplan Ince, Box–Behnken design approach for optimizing removal of copper from wastewater using a novel and green adsorbent, At. Spectrosc., 38 (2017) 200–207.
  39. Z. Ding, X. Hu, Y. Wan, S. Wang, B. Gao, Removal of lead, copper, cadmium, zinc, and nickel from aqueous solutions by alkali-modified biochar: batch and column tests, J. Ind. Eng. Chem., 33 (2016) 239–245.
  40. M. Ince, Comparision of low-cost and eco-friendly adsorbent for adsorption of Ni(II), At. Spectrosc., 35 (2014) 223–233.
  41. S.C. Sithole, L.L. Mugivhisa, S.O. Amoo, J.O. Olowoyo, Pattern and concentrations of trace metals in mushrooms harvested from trace metal-polluted soils in Pretoria, South Africa, S. Afr. J. Bot., 108 (2017) 315–320.
  42. P.K. Ouzouni, D. Petridis, W.-D. Koller, K.A. Riganakos, Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece, Food Chem., 115 (2009) 1575–1580.
  43. M. Rudawska, T. Leski, Macro- and microelement contents in fruiting bodies of wild mushrooms from the Notecka forest in west-central Poland, Food Chem., 92 (2005) 499–506.
  44. J. Vetter, Mineral composition of basidiomes of Amanita species, Mycol. Res., 109 (2005) 746–750.
  45. Ö. Isildak, I. Turkekul, M. Elmastas, M. Tuzen, Analysis of heavy metals in some wild-grown edible mushrooms from the middle black sea region, Turkey, Food Chem., 86 (2004) 547–552.
  46. H. Basu, S. Saha, I.A. Mahadevan, M.V. Pimple, R.K. Singhal, Humic acid coated cellulose derived from rice husk: a novel biosorbent for the removal of Ni and Cr, J. Water Process Eng., 32 (2019) 100892, doi: 10.1016/j.jwpe.2019.100892.
  47. M. Zamani Beidokhti, S. Taghi (Omid) Naeeni, M.S. AbdiGhahroudi, Biosorption of nickel(II) from aqueous solutions onto pistachio hull waste as a low-cost biosorbent, Civ. Eng. J., 5 (2019) 447–457.
  48. X. Fan, J. Xia, J. Long, The potential of nonliving Sargassum hemiphyllum as a biosorbent for nickel(II) removal—isotherm, kinetics, and thermodynamics analysis, Environ. Prog. Sustainable Energy, 38 (2019) S250–S259.
  49. J. Annie Kamala Florence, T. Gomathi, N. Thenmozhi, P.N. Sudha, Adsorption study: removal of nickel ions using Kenaf fiber/chitosan biosorbent, J. Chem. Pharm. Res., 7 (2015) 410–422.
  50. S. Gupta, A. Kumar, Removal of nickel(II) from aqueous solution by biosorption on A. barbadensis Miller waste leaves powder, Appl. Water Sci., 9 (2019) 96, doi: 10.1007/s13201-019-0973-1.
  51. Y.F. Lam, L.Y. Lee, S.J. Chua, S.S. Lim, S. Gan, Insights into the equilibrium, kinetic and thermodynamics of nickel removal by environmental friendly Lansium domesticum peel biosorbent, Ecotoxicol. Environ. Saf., 127 (2016) 61–70.
  52. L. Liu, J.P. Xie, Y.J. Li, Q. Zhang, J.M. Yao, Three-dimensional macroporous cellulose-based bioadsorbents for efficient removal of nickel ions from aqueous solution, Cellulose, 23 (2016) 723–736.
  53. D.E. Vazquez-Palma, A.R. Netzahuatl-Munoz, G. Pineda-Camacho, E. Cristiani-Urbina, Biosorptive removal of nickel(II) ions from aqueous solutions by hass avocado (Persea Americana mill. Var. Hass) shell as an effective and low-cost biosorbent, Fresenius Environ. Bull., 26 (2017) 3501–3513.
  54. M. Villen-Guzman, M.M. Cerrillo-Gonzalez, J.M. Paz-Garcia, J.M. Rodriguez-Maroto, B. Arhoun, Valorization of lemon peel waste as biosorbent for the simultaneous removal of nickel and cadmium from industrial effluents, Environ. Technol. Innovation, 21 (2021) 101380, doi: 10.1016/j.eti.2021.101380.
  55. C. Zhao, H. Zheng, Y. Sun, B. Liu, Y. Zhou, Y. Liu, X. Zheng, Fabrication of tannin-based dithiocarbamate biosorbent and its application for Ni(II) ion removal, Water Air Soil Pollut., 228 (2017) 409, doi:10.1007/s11270-017-3593-0.
  56. R. Foroutan, H. Esmaeili, A.M. Sanati, M. Ahmadi, B. Ramavandi, Adsorptive removal of Pb(II), Ni(II), and Cd(II) from aqueous media and leather wastewater using Padina sanctae-crucis biomass, Desal. Water Treat., 135 (2018) 236–246.
  57. A. Saravanan, P. Senthil Kumar, B. Preetha, Optimization of process parameters for the removal of chromium(VI) and nickel(II) from aqueous solutions by mixed biosorbents (custard apple seeds and Aspergillus niger) using response surface methodology, Desal. Water Treat., 57 (2016) 14530–14543.
  58. S.H. Ranasinghe, A.N. Navaratne, N. Priyantha, Enhancement of adsorption characteristics of Cr(III) and Ni(II) by surface modification of jackfruit peel biosorbent, J. Environ. Chem. Eng., 6 (2018) 5670–5682.
  59. P. Lin, J. Wu, J. Ahn, J. Lee, Adsorption characteristics of Cd(II) and Ni(II) from aqueous solution using succinylated hay, Int. J. Miner. Metall. Mater., 26 (2019) 1239–1246.
  60. A.L. Popovic, J.D. Rusmirovic, Z. Velickovic, Z. Radovanovic, M. Ristic, V.P. Pavlovic, A.D. Marinkovic, Novel aminofunctionalized lignin microspheres: high performance biosorbent with enhanced capacity for heavy metal ion removal, Int. J. Biol. Macromol., 156 (2020) 1160–1173.
  61. A. Elkhaleefa, I.H. Ali, E.I. Brima, A.B. Elhag, B. Karama, Efficient removal of Ni(II) from aqueous solution by date seeds powder biosorbent: adsorption kinetics, isotherm and thermodynamics, Processes, 8 (2020) 1001, doi: 10.3390/pr8081001.